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Abstract—We are motivated by newly proposed methods for
mining large-scale corpora of scholarly publications (e.g., full
biomedical literature), which consists of tens of millions of papers
spanning decades of research. In this setting, analysts seek to
discover relationships among concepts. They construct graph
representations from annotated text databases and then formulate
the relationship-mining problem as an all-pairs shortest paths
(APSP) and validate connective paths against curated biomedical
knowledge graphs (e.g., SPOKE). In this context, we present COAST
(Exascale Communication-Optimized All-Pairs Shortest Path) and
demonstrate 1.004 EF/s on 9,200 Frontier nodes (73,600 GCDs).
We develop hyperbolic performance models (HYPERMOD), which
guide optimizations and parametric tuning. The proposed COAST
algorithm achieved the memory constant parallel efficiency of 99%
in the single-precision tropical semiring. Looking forward, COAST
will enable the integration of scholarly corpora like PubMed into
the SPOKE biomedical knowledge graph.

Index Terms—Shortest Path Problem, High-Performance Com-
puting, Parallel Algorithms

I. GORDON BELL JUSTIFICATION

We computed all-pairs shortest path (APSP) on a graph
with 7.06 million vertices using 9,200 Frontier nodes (73,600
GCDs) in 11.7 minutes at 1.004 exaflop/s (single-precision,
99% memory constant parallel efficiency and 75% machine-
peak for tropical semi-ring GEMM). This computation would
be the first exaflop-level demonstration of a graph algorithm and
the first scientific study on the integration of SPOKE (Scalable
Precision Medicine Open Knowledge Engine) with publication
information by using paths.

II. OVERVIEW OF THE PROBLEM

The scientific context of this work is SPOKE [1],1 an ongoing
effort of biomedical researchers to organize and represent
the knowledge embedded across a wide variety of disparate
biomedical datasets as a unified graph representation, or
knowledge graph. The many millions of graph nodes represent
biological and biomedical concepts and entities (e.g., genes,
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TABLE I: Gordon Bell Performance Attributes.

Attributes Category Details

Category Peak performance 1.004 exaflop/s

Type of N/A N/A
method used

Results reported Whole application End-to-end APSP
on the basis of except I/O and Init

Precision Single (FP32)

System scale Measured 98% of Frontier
(9,200 nodes,
73,600 GCDs)

Measurement Timers Direct timer
mechanism instrumentation

diseases, pathways, proteins, symptoms). The edges represent
known relationships among these nodes, such as “cell expresses
gene,” “compound causes side effect,” or “nirmatrelvir/ritonavir
treats COVID-19.” The known relationships among different
biomedical fields (e.g., genomics, physiology, cellular behavior,
clinical observations) and even environmental factors (e.g.,
“lead compounds”) are highly complex, as illustrated in Figure 1.
In response, graph databases have recently gained popularity
as a practical solution to integrating such disparate sources of
information. The SPOKE graph database is meant to facilitate
the discovery of new knowledge by enabling users to explore
the structure of this graph and run a variety of analytical queries
against it.

The remarkable variety of downstream tasks envisioned for
SPOKE include a pharmaceutical lab’s discovery of candidate
drug compounds for a given disease, an environmental agency’s
identification of a toxin that may be associated with a condition,
or a doctor’s querying for potential diagnoses based on
observations of their patient. SPOKE has also been applied
to the study of COVID-19. With the sequencing of the SARS-
CoV-2 virus, its effects on the human molecular framework
and systems were evident [2], [3]. The chain of events that
cause dangerous cytokine and bradykinin storms in patients,
the effects on human respiratory pathways, and the potential
treatments (e.g., dexamethasone, corticosteroids) were all laid
out in the SPOKE biomedical knowledge network [4].

In this paper, we consider the comparison of knowledge
encoded within SPOKE, which is largely human curated, against
concept relationships that might be mined automatically from
a scholarly database (i.e., the papers in Pubmed/MEDLINE).
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Such an analysis would be a major step toward comparing
and integrating these two forms of biomedical knowledge. The
paradigm for analysis is based on examining paths in the graph
and the distances between concepts [5]–[7]. The bottleneck of
this analysis is the APSP computation.

Because the graphs of interest have many millions of vertices,
the comparison requires leadership-class computing resources
and appropriate scaling of our methods. Our scalable method
for APSP is the Exascale Communication-Optimized All-
Pairs Shortest Path (COAST) algorithm, which implements
a GPU-accelerated, distributed-memory parallel version of the
Floyd-Warshall (FW) algorithm. Our experiment targets the
Oak Ridge National Laboratory’s Frontier system, the first
exascale supercomputer. Our approach performs well because
FW relies on matrix-multiplication-like (i.e., level-3 BLAS-
like) operations, which are well suited to distributed-memory
systems [8] and GPUs [9].

We apply this algorithm to a dataset of 18.5 million vertices
and 213 million relations that represent biomedical concepts,
publications, and their connections extracted from the new
COVID-19 Open Research Dataset (CORD-19) [11] and the
Pubmed database. We also investigate whether the paths
determined in Pubmed by using COAST are meaningful by
investigating their presence in the SPOKE knowledge graph.

A. Challenges of Frontier over Summit

Scaling APSP to an exascale machine is considerably more
challenging than our previous experiences. We previously
demonstrated 136 petaflop/s in single-precision on a pre-
exascale machine—Summit [10]. However, lessons from pre-
exascale systems do not always translate to similar efficiency on
an exascale machine. The difficulty is that various components
in the computation can behave in unexpected ways and lead
to non-intuitive observations. This puzzle has several facets:
(1) most components of the computation have more than one
algorithm; (2) each candidate algorithm’s performance depends
strongly on the input size and scale of the machine; and (3)
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Fig. 1: Hierarchical organization of human biology, genomics,
and up. Each layer has interconnections (e.g., a protein may be
related to another), and the layers are connected via specific
vertices (e.g., a specific gene expresses a specific protein).

when combining optimized components, performance does not
necessarily compose.

To better understand this difficulty, suppose there are two
variants of the APSP implementation: naı̈ve and optimized.
Each component in the optimized variant is asymptotically
faster than its naı̈ve counterpart, whether it is the broadcast
algorithm, rank placement, or GPU compute kernel. When run
on the entire Frontier supercomputer, the naı̈ve algorithm can
still outperform the optimized variant for many problem sizes
despite using asymptotically slower components (Figure 8).

Additionally, performance variations across nodes can cause
significant performance differences from what a simple asymp-
totic projection might otherwise predict. There are many
sources of such performance variability, including complex
combinations of random events (e.g., thermal performance
throttling, clock speed fluctuations, skew, operating system
noise), that are common at scale. Hence, we seek to design
algorithms that gracefully tolerate such random events (e.g.,
minimize their impact on performance) and reduce performance
variance across multiple runs of the same algorithm.

Targeting Frontier, we developed multiple optimized can-
didates for different performance aspects (e.g., computation,
communication, rank placement). We then built performance
models by using various benchmarking runs of these optimized
candidates on the Summit and Frontier systems. During
large-scale executions, these models can quickly estimate the
performance of different components, and this information then
enables better-informed designs that can achieve the desired
performance on the target system.

The key enabling ideas in our overall approach are as follows.
• We develop a 2D-distributed FW algorithm that uses GPUs

and optimized communication, that scales APSP to inputs
with millions of vertices on 9,200 nodes of Frontier.

• For Frontier, we used packed 32-bit floating point (FP32)
semi-ring based GEMM (OPTSSRGEMM-NT) on AMD’s
MI250X GPU along with the ring-2 modified communication
strategy to scale to 9,200 nodes.

• Targeting high-performance computing (HPC) architectures
with GPUs, we develop a novel performance model based
on the hyperbolic performance model (HYPERMOD). We
propose a parameter estimation heuristic to determine
the model parameters via experiment. HYPERMOD can
determine the component-candidates that meet a desired
performance target of COAST on Frontier.

• We show that APSP algorithms can uncover novel relations
from biomedical knowledge graphs at scale by investigating
these paths on the SPOKE knowledge graph.

• On Frontier, we achieve 1.004 EF/s for a graph analysis
algorithm based on state-of-the-art practices.

III. CURRENT STATE OF THE ART

A. Summit and Frontier architectures

The Oak Ridge Leadership Computing Facility (OLCF)
currently hosts two leadership-class supercomputers: Summit
and Frontier (Table III).
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Fig. 2: Path toward exaflops: Figure 2a compares COAST performance on Frontier vs. Summit. Every point is annotated (Nodes,
Performance). Figure 2b shows the experimental runs to validate the projection from HYPERMOD while finding the smallest
size to achieve 1 exaflop/s. Figure 2c shows the per iteration and the cumulative aggregated flops of the experiment run on
9,200 nodes for 702 seconds and also shows the achieved 1.004 EF/s. Note that the 2 MPI ranks share a graphics complex die
(GCD), and therefore the instantaneous flops estimated from MPI Rank 0 can fluctuate between 250 petaflop/s and 2 exaflop/s.

TABLE II: Gordon Bell justification. Refer to Table III for metrics. To demonstrate that we could use a graph 3× larger than
the one used for Summit, we ran the entire 2018 PubMed graph for 15 minutes and achieved 1.008 exaflop/s.

Nodes MPI (P ) Row (Px) Col (Py) Vertices (n) Memory (TB) Time Exaflops Fraction of
(s) (single precision) peak

Summit’s fastest run [10]
4,096 24,576 192 256 4.43×106 157 1.28×103 1.36×10−1 70%

Frontier’s fastest run (Section VII-A)
9,200 147,200 368 400 7.06×106 399 702 1.004 75%

Frontier’s largest run (7% completion)
9,025 144,400 380 380 18.6×106 2,768 913 1.008 75%

Summit Frontier

Nodes 4,608 9,408
Processor POWER9 3rd-gen EPYC
GPU NVIDIA V100 AMD MI250X
GCDs per node 6 8
Memory per GPU/GCD 16 GB 64 GB
FP16/FP64 (GCD) 125/7.8 TF/s 298/54.5 TF/s
GPU interconnect NVLINK Infinity Fabric

NICs 2× Mellanox 4× Slingshot-11
EDR IB

NIC bandwidth per node 12.5 + 12.5 GB/s 25 + 25 GB/s

SSRGEMM Performance metrics per node
Theoretical peak 47.1 TF/s 144 TF/s

TABLE III: Key architectural specifications for Summit and
Frontier using sustained frequency for Frontier (SSRGEMM
peak, not boost frequency).

The proposed COAST algorithm leverages certain Frontier-
specific features that impact the choice of parameters, optimiza-
tion, and ultimately the performance of the code at scale. When
comparing the two systems, we consider a single NVIDIA Volta
GPU on Summit against a single graphics complex die (GCD)
of an AMD MI250X on Frontier. The GPU memory dictates
the maximum size of the problem that can be solved. The

GCD count per node impacts the number of MPI ranks per
node. Frontier’s AMD GPUs also have 4× the memory per
GCD over Summit and can thus handle larger problems.

Most importantly, GCD performance correlates with the
performance of COAST. Frontier has 3× more performance per
node in single-precision SRGEMM (SSRGEMM) and more than
2× as many nodes as Summit. Frontier is expected to see more
than a 7× COAST performance improvement over Summit
at a full scale, which closely matches the 8× computational
power increase of Frontier over Summit in 64-bit floating point
(FP64) arithmetic.

Considering communication costs, the time required to the
exchange the matrix correlates with the number of network
interface controllers (NICs) and their performance. The Frontier
NIC is directly connected to the GPU, and this direct connection
enhances the performance of GPU-aware MPI because the
memory contents can be transferred between the GPUs without
offloading through other components, thus reducing latency.

B. SPOKE

SPOKE is an evolving biomedical knowledge network that
integrates over 40 data sources into a graph with more than 50
million vertices (of 20 types) and more than 100 million edges
(of 55 types) [1]. This data includes genomic associations with
disease, chemical compounds and their binding targets, and



Fig. 3: SPOKE metagraph: Vertices denote biological concepts,
and edges show relationships among the concepts.
metabolic reactions from select bacterial organisms of relevance
to human health (Figure 3).

SPOKE draws from seven standard biomedical ontologies
in the National Center for Biomedical Ontology’s BioPor-
tal repository. Several of the key concepts are mapped to
biomedical ontologies to provide an organizational framework
and facilitate user navigation. SPOKE also uses ontologies to
mark up the datasets coming into the knowledge graph for
consistent linking and contributes to and aligns with the Biolink
biomedical semantic standard.2

C. Pubmed and CORD-19 Dataset as a Graph

As mentioned in Section II, our Pubmed graph was con-
structed using the Semantic MEDLINE database [12]. Here,
we briefly summarize the construction of the graph from the
Pubmed and CORD-19 datasets. The graph is composed of
two types of vertices: concepts and abstracts. The vertices can
be connected in three different ways: (1) concept-to-concept
relations (co-occurrences), (2) concept-to-abstract relations
(occurrences), and (3) abstract-to-abstract relations (citations).
Additional details appear in Appendix XI-D and with the
dataset itself [13].

IV. INNOVATIONS REALIZED

APSP is the simultaneous computation of the shortest paths
between all pairs of vertices in a graph. During the computation
of APSP, FW algorithms maintain and update a 2D array of
distances, Dist. FW uses a dynamic programming approach to
computing APSP by initializing Dist with the input weights,
W . Then, in the k-th iteration, it checks for all pairs of
vertices, vi and vj , to determine if there is a shorter path
between them via the intermediate vertex, vk. If so, FW updates
Dist[i, j]. Therefore, Dist[i, j] after k steps, which we denote
by Distk[i, j], may be defined recursively as

min
{
Distk−1[i, j],Distk−1[i, k] + Distk−1[k, j]

}
.

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440568/

Algorithm 1 COAST.

1 def COAST (A, P = Pr × Pc):
2 # A is distributed in block cyclic fashion
3 # my process Id is pid
4 # On each MPI process pid do in parallel:
5 for k in {1, 2 . . . , nb}:
6 if pid= pk,k:
7 A(k, k)← FW (A(k, k)) #Diagonal Update
8 GPUAwareRingBCast(A(k, k), Pr(k))
9 GPUAwareRingBCast(A(k, k), Pc(k))

10 if pid ∈ Pr(k):
11 Receive(A(k, k), pk,k)
12 A(k, :)← A(k, :)

⊕
A(k, k)⊗A(k, :) #Panel Update

13 GPUAwareRing2MBCast(A(k, :), Pc(pid))
14 else :
15 Receive(A(k, :))
16 if pid ∈ Pr(c):
17 Receive(A(k, k), pk,k)
18 A(:, k)← A(:, k)

⊕
A(:, k)⊗A(k, k) #Panel Update

19 GPUAwareRing2MBCast(A(:, k), Pr(pid))
20 else :
21 Receive(A(k, :))
22 # Min-plus outer product
23 if pid owns A(i, j):
24 # A(i, j)← A(i, j)

⊕
A(i, k)⊗A(k, j)

25 A(i, j)← OPTSSRGEMM -NT (A(i, k), A(k, j)T , A(i, j))

This can be computed in place by overwriting Distk[i, j] in
place of Distk−1[i, j].

APSP may be understood algebraically as computing the
matrix closure of the weight matrix, W , defined over the
tropical semi-ring [14]. Consider two matrices: A ∈ Rm×k

and B ∈ Rk×n. The MIN-PLUS product C of A and B is
Cij ← min

k
(Aik +Bkj) .

This product is an analogue of matrix-matrix multiplication
over the reals.

This computation may also be blocked. Divide Dist into
nb × nb blocks, each of size b × b (i.e., nb = n

b ). Let Aij

denote the (i, j) block of A, where 1 ≤ i, j ≤ nb. A blocked
version of FW, called BLOCKEDFW, can carry out the same
APSP computation as FW in the following three steps.
(1) Diagonal Update (DIAGUPDATE): Perform the classic

FW algorithm on a diagonal block, Akk.
(2) Panel Update (PANELUPDATE): Update the k-th block

row and column. For any block, A(k, j), j ̸=k in the block
row, the update is a MIN-PLUS multiply with Akk from
the left. For block A(i, k) on the k-th block column, it is
MIN-PLUS multiply with Akk from right:

A(k, j)← A(k, j)⊕ A(k, k)⊗A(k, j) j ̸= k

A(i, k)← A(i, k)⊕ A(i, k)⊗A(k, k) i ̸= k
Here, a⊕ b denotes min{a, b}, and a⊗ b denotes a+ b.

(3) MinPlus Outer Product: Perform the outer product of k-th
block row and block column and update all the remaining
blocks of matrix A:

A(i, j)← A(i, j)⊕ A(i, k)⊗A(k, j) i, j ̸= k.
This step is analogous to a Schur-complement update in
an LU or Cholesky factorization.

A. Parallel FW Algorithm on a 2D Process Grid

We call the BLOCKEDFW’s parallel distributed memory
realization by using MPI as PARALLELFW. The MPI processes



are logically arranged in a 2D process grid of dimension px ×
py. On this 2D process grid, the distance input matrix A is
distributed in a block-cyclic fashion such that a block Ai,j

resides in a process with coordinates (i mod Pr, j mod Pc).
The outer loop of PARALLELFW proceeds as the

BLOCKEDFW. However, we have additional communication
steps, namely DIAGBCAST and PANELBCAST, so that all
processes can perform the PANELUPDATE and OUTERUPDATE.

After process Pkk performs DIAGUPDATE on block Akk,
the process Pkk broadcasts Akk across its process row Pr(k)
and its process column Pc(k). In the panel update step, each
process in Pr(k) performs left multiplies of Ak: with Akk,
and each process in Pc(k) performs right multiplies of A:k

with Akk. Subsequent to the panel update, each process in
Pr(k) broadcasts blocks of Ak: to its process column, and
each process in the Pc(k) broadcasts blocks of A:k to its
process row. Finally, upon receiving Ak: and A:k, each process
performs OUTERUPDATE on its local copy.

B. Communication Optimizations

The PARALLELFW algorithm performs a high volume of
communication in the O

(
n2

Px
+ n2

Py

)
(see Section IV-D). As

such, more time is spent in communication than computation
when scaling to many nodes. To alleviate potential communi-
cation issues, we consider several techniques:
• Look-ahead: The look-ahead technique overlaps the two

operations. We leverage the idea of breaking the dependency
between k and k+1 iterations to achieve the overlap.

• Ring broadcast: The traditional library provided in
MPI BCast may not be most efficient for our application
because it uses a kd-tree pattern (also called hyper-cube al-
gorithm). Such an algorithm balances latency and bandwidth
costs. To this end, we exercise Ring and Ring-2 modified at
full scale on Frontier.

• GPU-aware MPI: Unlike Summit, Frontier’s NICs are
directly connected to GPUs. Hence, communicating the GPU
buffers with GPU-aware MPI directly from GPU to GPU
will be faster than communicating through the CPU.
On Frontier, every node has four separate NICs connected

directly to the Slingshot network. For COAST to utilize all
four NICs concurrently, we use the rank placements provided
via the Cray MPICH library. Appendix XI-B details these
optimizations.

C. Acceleration on AMD MI250X GPUs

Frontier boasts AMD’s MI250X accelerator, which is based
on the CDNA architecture and contains two GCDs with 110
compute units (CUs) each [15]. Each CU contains four single
instruction, multiple data engines, which are 16-lanes wide,
for a total of 64 operations per cycle. The MI250X supports
packed FP32 instructions, which operate on pairs of FP32
operands, and fused multiply add (FMA) instructions, which
perform multiplication and addition in one step and effectively
bring the throughput to 256 floating-point operations per cycle.

Unfortunately, we cannot use the FMA instruction for the
min-plus Cij ← min(Aik + Bkj , Cij) operation required by
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Fig. 4: (a) The min-plus kernel blocking factors and (b) con-
straints used to trim the tuning space.

bm bn bk dm dn dma dna dmb dnb
NN 256 64 4 32 8 64 4 4 64
NT 64 256 4 8 32 64 4 64 4
TN 128 192 4 32 8 4 64 4 64
TT 64 256 4 8 32 4 64 64 4

TABLE IV: Tuned blocking factors for OPTSSRGEMM-NT;
b represents blk, e.g., bk stands for blk k; d represents dim,
e.g., dmb stands for dim m b.

the algorithm. Instead, we use the packed FP32 add instruction
and the FP32 min3 instruction. The packed FP32 add sums
two pairs of operands, and FP32 min3 finds the minimum
of three operands simultaneously. This combination takes two
input values of A and two input values of B and produces one
output value of C using one packed FP32 add and the FP32
min3. This design yields 128 operations per cycle.

The MAGMA (Matrix Algebra on GPU and Multicore
Architectures) [16] kernel was the starting point for a fast
implementation of the min-plus kernel, OPTSSRGEMM-NT. We
found that the MAGMA SSRGEMM kernel delivers 5.6 TF/s
on one GCD of the MI250X GPU, which is much less than
we expected based on a theoretical peak of 18 TF/s. After
applying vectorization, pipelining, and autotuning to produce a
faster implementation, we achieved performance levels of up to
15.3 TF/s for the NT version. Here, ‘N’ stands for no transpose,
and ‘T’ stands for transpose. For example, the SSRGEMM NT
version is performed as A×BT . The other versions perform
slightly worse owing to less favorable memory access patterns:
14.8 TF/s for NN, 12.2 TF/s for TN, and 15.1 TF/s for TT. This
is of little concern because the code is structured to leverage
the NT kernel. The details of these optimizations are presented
in Appendix XI-C.

D. COAST Analysis

1) Computation Cost
In the blocked FW algorithm, the total number of floating-

point operations is 2n3 distributed among P processes. Let γ
be the cost of one floating-point operation. The time to perform



these floating-point operations on P processes is

Tcomp =
2n3

P
γ. (1)

2) Communication Cost
If b is the block size used for block-cyclic data distribution,

then Algorithm 1 performs the n
b outer loop iterations. In each

of the iterations, each process participates in two broadcasts:
nb
Pr

across the process row and nb
Pc

across the process column.
In the ring broadcast, the total cost of the two broadcasts
is 2α + β

(
nb
Pr

+ nb
Pc

)
, where α is the setup cost of sending

a message, and β is the cost of sending a unit-float word.
Because the outer iteration runs for n

b iterations, the total
communication cost is 2n

bα+ β(n
2

Pr
+ n2

Pc
).

Tcomm = 2
n

b
α+ βn2

(
1

Pr
+

1

Pc

)
(2)

3) Total Cost
Depending on n and P , either Tcomp or Tcomm will dominate

the total cost of computation. In the ideal case, we can
completely overlap the communication with computation or
vice versa. In that case, the total cost is given by

Tideal = max

{
2n3

P
γ, 2

n

b
α+ β

(
n2

Pr
+

n2

Pc

)}
. (3)

In the worst case, communication and computation will not
overlap at all, in which case the total cost is given by

Tworst = Tcomp + Tcomm =
2n3

P
γ + 2

n

b
α+ β

(
n2

Pr
+

n2

Pc

)
.

(4)
These models act as guidelines to validate the scaling experi-
ments. Most of the experiments were cross-validated against
this model, and we present the application of the model on
the weak scaling experiments in Section V.

E. Hyperbolic Performance Model (HYPERMOD)

The preceding asymptotic model is only accurate for large
values of problem parameters. Such models can break down
because increasing the number of processes can make other
parameters (e.g., problem size per process) small, which results
in less accurate predictions.

Instead, we use hyperbolic performance models, which are
functions, y = f(x), the shapes of which are hyperbolas in
the xy-plane. If η is a performance parameter, then hyperbolic
models can be understood as a combination of performance
models that are asymptotic to η and 1

η . A general hyperbolic
model, y = f(η), is given by

y := f (η) =
aη + b

cη + d
a, c, ad− bc ̸= 0

The function f (η) has two asymptotes: y = a
c as η →∞ and

y = b
d as η → 0. In this paper, we assume b = 0 so that

y := f (η) =
aη

cη + d
a, c, ad ̸= 0. (5)

Without loss of generality, we can further assume c = 1; thus
y := f (η) =

aη

η + d
a, ad ̸= 0. (6)

This model captures asymptotes on both sides of the parameters
instead of just a single side as in the traditional model.
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Fig. 5: Performance models for communication. Figure 5a
shows effective per-node bandwidth estimated by our models.
We show the actual and predicted time for MPI BCast and
ring-based BCast in Figure 5b.

F. Parameter Estimation of HYPERMOD

We can estimate a and d of HYPERMOD using a least-
squares fit. Assume g(ηi) is the observed performance value
that we are fitting against our model, f(ηi), where function f
is defined in Equation (6). Then, the least-squares objective is

argmin
a,d

∑
i

(g (ηi)− f (ηi))
2
.

The above function is a biased estimator because least squares
favor minimizing the error of larger ηi. The resulting model will
behave similarly to a traditional asymptotic model. To overcome
this problem, we reformulate the objective for HYPERMOD to
be

argmin
a,d

∑ 1

ηi
·
(
log

f (ηi)

g (ηi)

)2

. (7)

This optimization problem is challenging. We use an approxi-
mation heuristic for parameter estimation.

a ≈ max
i

g(ηi) (8)

d ≈ argmin
ηi

∣∣∣g(ηi)− a

2

∣∣∣ . (9)

In many cases, Equation (9) provides a good solution—
especially when the observations are not noisy. Otherwise, we
sweep the values of d within a tiny approximate neighborhood
to choose the best fit for g(ηi).

The sustainable floating-point operations per second rates for
SSRGEMM with different parameters are recorded in Figures 6a
and 6b. The effective per-node bandwidth and communication
time for different broadcasts are recorded in Figures 5a and 5b.
They show the proximity of our hyperbolic performance model
against the real world experiments. The parameters for our
HYPERMOD are recorded in Table V.

V. HOW PERFORMANCE WAS MEASURED IN EXPERIMENTS

First, we look at COAST’s single-node efficiency compared to
other APSP baselines (Section XI-D1) on a variety of real-world
graphs that fit within a node (Section XI-D2). Appendix XI-D
provides complete details of the real-world experiments. These
experiments help establish whether node-local code is a good
building block for the distributed implementation. We conduct
weak-scaling experiments in which we fix the per-node problem
size of O(n3/p). Weak scaling matches aspects of a growing
biomedical literature and should be an easy case for COAST.



Performance models a d
Input Output

K SSRGEMM 15.56 TF/s K = 70
performance

Local SSRGEMM 15 TF/s 4.00 MB
matrix size performance

Local Effective per-node 17.7 GB/s 0.06 GB
matrix Size ring bandwidth

Local Effective per-node 8.7 GB/s 0.018 GB
matrix size MPI bandwidth

TABLE V: Parameter estimation of HYPERMOD for different
computation and communication performance levels.
Subsequently, we present the projection and the experiments
conducted on Frontier at full scale. Lastly, we analyze the paths
determined in Pubmed against the SPOKE graph in Section VIII.

1) Environment
The software environment on Summit comes from IBM and

differs from Frontier, which is an HPE/Cray system. On Sum-
mit, the software versions used are GCC 9.1.0, IBM Spectrum
MPI 10.4.0.3, and CUDA 11.4.243. Summit’s jsrun tool is
used to launch applications. On Frontier, the software versions
used are GCC 11.2.0, Cray-MPICH 8.1.17, ROCM 5.1.0, and
MAGMA 2.6.1. No other proprietary software was used.

VI. PERFORMANCE RESULTS AND OBSERVATIONS

A. Block and Input Size Effect on SSRGEMM Performance

Figures 6a and 6b show OPTSSRGEMM-NT runs on one
of Frontier’s AMD MI250X, MAGMA SSRGEMM runs on a
single MI250X GCD, and cuASR runs on one of Summit’s
NVIDIA Volta GPUs. The plots show that OPTSSRGEMM-NT
significantly outperforms MAGMA on MI250X and cuASR on
NVIDIA Volta for block sizes greater than 256. OPTSSRGEMM
-NT on MI250X is 2.2× faster than cuASR on NVIDIA Volta.

We observed an increase in performance as the block size
increased from 1 to 128 due to the compute intensity associated
with OPTSSRGEMM-NT. Beginning at block size 128, we
achieve peak performance, which then flattens out. Similarly,
for input sizes above 8,192, the performance flattens.

Higher block sizes result in fewer global iterations of COAST.
Therefore, we obtain the best communication performance at
block size 4,096. However, the diagonal panel update time is
higher for a larger K, and COAST’s best overall performance
is achieved for K = 768. Hence, we choose a block size of
768 for our experiments on Frontier.

B. Real-World Experiments on a Single Node

We compared the FW algorithm based on SSRGEMM against
other single-node implementations using the datasets from
Table VII, which were taken from the SuiteSparse Matrix
Collection [17]. We either developed or obtained open-source
baselines for these experiments.

Both Summit and Frontier have fat nodes with 512 GB
of CPU-attached memory per compute node. However, the

AMD EPYC CPUs on Frontier have higher floating-point
throughput and increased bandwidth. Hence, in most cases,
the speedup of MI250X over the CPU on Frontier is not as
significant as it is on Summit. The details of the experiments
are presented in Appendix XI-D. This experiment established
whether node-local code is a good building block for a
distributed implementation.

C. PARALLELFW Variations

PARALLELFW is a naı̈ve 2D algorithm without any optimiza-
tion and uses MAGMA’s realization of the SSRGEMM kernel as
a baseline. We benchmarked six variants of PARALLELFW by
varying the communication-optimization strategies discussed
in Section IV-B using the tuned OPTSSRGEMM-NT kernel.
The PARALLELFW with look ahead is called LA. The variant
LA+R is PARALLELFW +LA with ring communication on
the CPU. The GMPI and GMPI+R are GPU-aware MPI
realizations of LA and LA+R, respectively. Per Section IV-C,
performing SSRGEMM over A×BT as the NT kernel is faster
than the NN kernel with A×B. GMPI+NT+R is the variant
that exercises the NT kernel. Finally, we present COAST, which
utilizes all optimizations (e.g., look ahead, ring, and pipelined
ring-2 modified broadcasts) directly by using GPU-aware MPI
along with the NT kernel.

D. Single-Node Performance of COAST

In a previous development, we placed two MPI ranks per
GCD to fully saturate the GCD’s computing power. We scanned
through several batch sizes, B, and vertices, N , to build the
baseline performance of our single node result (Figure 6c). Our
code achieved 14.7 teraflop/s/GCD (81% of theoretical peak)
at sizes N = 162,816 and 13.7 teraflop/s per GCD (76% of
peak) at N = 76,800.

E. Weak Scaling

For the weak-scaling experiment, we keep the compute-per-
MPI rank fixed. That is, we maintain O(n3/p) floating point
operations per rank across the different runs. We present two
key observations from Figure 7. (1) The COAST algorithm is
2.53× more efficient over the naı̈ve PARALLELFW on 1,024
nodes. We see the incremental performance improvement for
every communication optimization (e.g., look ahead, ring, and
GPU-aware MPI). The GPU-aware MPI and ring broadcast
using OPTSSRGEMM-NT exhibits the best performance. The
pipelined ring broadcast improvement in the fully optimized
COAST lowers the performance variance in the case of many
nodes. (2) The naı̈ve implementation achieves 62%, and the
proposed COAST achieves at least 97% efficiency when weak
scaling to 64× as many processes. We remain compute-bound
throughout the weak-scaling experiments.

F. Ring vs. Off-the-Shelf MPI Broadcast

Figure 5a shows the effective per-node bandwidth by
sweeping the local nodes’ matrix size for the Cray-MPICH
broadcast against the ring broadcast discussed in Section IV-B.
For per-node matrix sizes less than 20 MB, the off-the-shelf
MPI broadcast offers higher bandwidth. For larger matrices
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Fig. 6: Single Node Performance Comparison. Figure 6a shows sweeping K with fixed M = N =32768, whereas in Figure 6b,
we sweep M with fixed K =512. Single node performance with different block values of COAST is shown in Figure 6c.
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Fig. 7: Weak scaling on Frontier: R stands for Ring, NT is
SSRGEMM on A×BT , and GMPI is GPU-aware MPI.
from 70 MB and up, ring broadcast offer 2× the effective
bandwidth over MPI broadcast. In Figure 5b, we see a clear
2× advantage for ring broadcast in wall time for large local
matrix sizes.

VII. SCALING ON FRONTIER

In this section, we present the challenges and our mitigation
strategies for scaling COAST to nearly the full Frontier system.
Additionally, we provide the actual run result to compare with
our HYPERMOD projection model and provide lessons learned
from running applications on an exascale machine.

A. Performance Projection on Full Frontier

Finally, we combine the SSRGEMM and effective bandwidth
HYPERMOD models along with the Equation (3) for perfor-
mance results on Frontier. For both the naı̈ve and the optimized
PARALLELFW, we project the performance of Frontier by
using our models and parameters from Table V. The optimized
COAST consists of components that are asymptotically faster
than naı̈ve PARALLELFW implementations. Figure 8 shows
the heat map for the projected performance on Frontier. In
these plots, the values on every column from the bottom row
to the top row represent strong scaling. Similarly, the diagonal
values capture the weak memory scaling. The optimized
implementation is projected to achieve 1.1 exaflop/s on 9,216
nodes with 4.1×106 vertices or more. For peak performance, the
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Fig. 8: The COAST algorithm uses HYPERMOD to determine
the ideal implementations for obtaining the best performance.
Zero performance denotes running out of memory. The best
performance in the hatched cells is obtained through slower
naı̈ve components over the solid cells that use optimized variant.

optimized implementation COAST is 3× faster than the naı̈ve
PARALLELFW. The models capture real-world characteristics
in Figure 8, including out of memory (bottom right), strong
scaling performance that wanes on many nodes with smaller
matrix sizes (top left), and best performance on many nodes
for bigger graphs (top right).

B. Anticipated Challenges – HYPERMOD to Frontier

Despite our best effort to include every parameter in the
performance projection, we would like to discuss the limitations
of our projections and potential circumstances that could pose
a threat to achieving 1 exaflop/s as predicted.

Hardware faults: The HYPERMOD model does not account
for hardware faults such as a node or network failure. We
can alleviate the hard faults by using checkpoint/restart from
local NVMe storage, but this comes with a nonzero overhead.
If we checkpoint every 30 minutes, then we will incur a
performance overhead of 2.5% and drop our projection to
1.07 exaflop/s. If we checkpoint more frequently, say every
6 minutes or less, then we will miss the 1 exaflop/s goal. In
contrast to hard faults, dealing with soft faults is significantly



Scenarios Pubmed path SPOKE path
Scenario 1: Exact match C1448177 TNF protein → C5203670

COVID-19 → C1699239 IL7 protein
P01375 TNFA HUMAN (Protein) → DOID:0080600
COVID-19 (Disease) → P13232 IL7 HUMAN (Protein)

Scenario 2: All concepts in a Pubmed path map to SPOKE concept

Scenario 2a: Pubmed path has a
partial path in SPOKE

C0027059 Myocarditis → C0042769 Virus
Diseases → C0024312 Lymphopenia

DOID:820 Myocarditis (Disease) → DOID:934 Viral
Infectious Disease (Disease) but no direct link be-
tween DOID:934 Viral Infectious Disease (Disease) and
DOID:614 Lymphopenia (Disease).

Scenario 2b: All the concepts in the
Pubmed path could map to SPOKE
concepts, but none of the edges exist
in SPOKE shortest paths

C0021745 Interferon Type II → C0042774
Virus Replication → C0004364 Autoim-
mune Diseases → C0003469 Anxiety Dis-
orders → C3887665 Thrombopoietin

None of the edges exist in SPOKE shortest paths

Scenario 3: Some concepts in the Pubmed paths cannot map to SPOKE concepts

Scenario 3a: The collapsed paths are
also found in the SPOKE shortest
paths

C1699239 IL7 protein → C5203670
COVID-19 → G0000159 Expression →
C1698754 IL6 protein

After removing G0000159 expression, the full path is
P13232 IL7 HUMAN (Protein) → DOID: 0080600
COVID-19 (Disease) → P05231 IL6 HUMAN (Protein)

Scenario 3b: The collapsed paths
have a partial match in the SPOKE
shortest paths

C0035222 Respiratory Distress Syndrome
→ C0021400 Influenza → C0007634 Cells
→ C1171892 VEGF protein

After removing C0007634 Cells, only a partial path exists
in SPOKE, since there is no edge between DOID:8469
influenza (Disease) and P15692 VEGFA HUMAN (Pro-
tein)

Scenario 3c: Even after collapsing
no full or partial match in SPOKE

C3887665 Thrombopoietin → C0003469
Anxiety Disorders → C0004364 Autoim-
mune Diseases → C0012854 DNA →
C0032136 Plasmids → C1447107 HGF
protein

After removing the two unmapped concepts, C0012854
DNA and C0032136 Plasmids, the collapsed path is not
in SPOKE

Scenario 4: Path exists in SPOKE,
and no path exists in the Pubmed
co-occurrence graph

Does not exists in Pubmed (1) DOID:11394 Adult Respiratory Distress Syndrome
(Disease) → CHEMBL3989798 FORMOTEROL FU-
MARATE (Compound) → P07900 HS90A HUMAN
(Protein) → P09341 GROA HUMAN (Protein) and
(2) P09341 GROA HUMAN (Protein) → P01579
IFNG HUMAN

TABLE VI: Example paths on Pubmed and SPOKE.

more challenging because we do not have algorithm-based
fault tolerance techniques [18].

Frequent random events: Random events such as network
jitters can affect the accuracy of our model. In addition to
this, we do not model the effects of random events such
as staggered processors, GPUs and network links, thermal
performance throttling, clock speed fluctuations, skew, or
operating system noise. These random events can affect
performance in unpredictable ways.

C. Communication Cost at Large Scale

During our Summit development, we observed that panel
broadcast cost was mostly hidden by overlapping with the com-
putation. However, when we deployed our code on Frontier, we
observed that ring broadcast bandwidth/latency is insufficient
to maintain a fully computationally bound run. Communication
dominated computation for the processors located toward the
tail of the ring.

We introduce two separate strategies to cope with this issue:
(1) we keep the diagonal broadcast with the standard library
broadcast to reduce the latency on the critical path, and (2)
we pipeline the ring broadcast by breaking the messages into
smaller 4 MB chunks. Recall that our COAST algorithm is

already pipelined by design, and this additional messages
chunking pipeline targets the excess communication delays
at tail of the ring.

A slow link in the chain of network components can cause a
bottleneck, thereby forcing all processes to wait, and Figure 9a
shows the impact of a bottleneck as it affects ring and 2-
ring broadcasts. The ring-type broadcast often yields more
performance but is more susceptible to such issues and exhibits
higher performance variance. The implicit barrier in the library
broadcast can address this wait at the end of the tail but at a cost
of higher overall execution time. Our novel semi-synchronous
pipelined ring broadcast algorithm outperforms the vendor-
optimized library solutions while maintaining lower variance.
Figure 9b shows our experiment using different chunking sizes
and the best overall performance with a chunk size of 4 MB.

D. From 1 to 9,200 Nodes

At the time of this writing, Frontier was still an early access
system and therefore more prone to the hardware faults and
frequent random events. To avoid these problems, we started
our large-scale experiments from a lower number of vertices,
N = 583,680, to search for the smallest N for which we could
achieve 1 exaflop/s. Figure 2b shows that our runs closely match
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Fig. 9: Scaling Challenges on Frontier: Figure 9a shows the communication time per iteration recorded on the last rank using
2,809 nodes for Pr = Pc = 212 and N = 6,946,816. The time taken on the last 700 iterations with different chunk sizes and
the variations among three different runs under same settings are shown in Figures 9b and 9c, respectively.

our projection for 9,216 nodes and finally achieve 1 exaflop/s
at a vertex size of N = 7,065,600 on 9,200 nodes, which
results in 75% of peak and 99% memory-constant parallel
efficiency when compared with same memory usage on a single-
node run. At any particular iteration, the total performance on
that iteration and the cumulative aggregated performance on
9,200 nodes are shown in Figure 2c. The cumulative aggregate
performance achieved a stable region of 97% of 1 exaflop/s at
the 500th iteration, and at around 52% of the total run, the
machine achieved 1.004 EF/s.

E. Lesson Learned from Large-Scale Runs

We described the challenges of efficiently utilizing a large
HPC system in Section VII-B. Hardware faults and random
events cause performance reduction or even termination for
some faults. Figure 9c shows that three consecutive runs with
the same parameters all experience different network delays,
which causes a 5% variation of performance.

Frontier consists of more than 80,000 cables, 9,400 CPUs,
and more than 37,000 GPUs. There are millions of components.
Even with the high reliability of a single component, system-
level hardware faults are not uncommon when you multiply
the relatively low failure rate by millions of components.

Beyond the possibility of a parts failure, the staggered
network links and processes in a ring-based collective affect
MPI clusters negatively due to the long linear chains. Because
any staggered link along this chain could cause a significant
slowdown in the pipeline, MPI clusters will suffer either from
rerouting costs or slower routes.

In future, the high-performance codes may rely on
performance-sensitive checkpoints and link failures tolerant
MPI collective communication. One-sided communication and
checkpoint strategies that use NVMe, in-memory file systems,
or both are worth exploring for long-running jobs.

VIII. USE CASE

As described in Section III-C, we utilize co-occurrence
and occurrence within a paper along with the citations while
processing the Pubmed literature graph. However, SPOKE does
not have any paper-related information. Hence, we use only

co-occurrences to demonstrate the power of the integration
between the SPOKE biomedical knowledge network and the
Pubmed literature graph. Owing to the extant pandemic, we
focused on biomedical concepts related to COVID-19. COVID-
19-related concepts that appear in SPOKE v3 as vertices were
identified by using SPOKE’s Neighborhood Explorer [19]. A
total of 54 connected vertices, of which 6 are of type Disease
and 48 are of type Protein, are selected as sample data. We
validate each path determined from the Pubmed co-occurrence
graph against its presence on the SPOKE v3 graph. To compare
paths found in the two graphs, mappings between concepts
are applied by using the Unified Medical Language System’s
(UMLS’s) Concept Unique Identifiers (CUIs) [20].

Given that one SPOKE identifier could map to multiple
UMLS CUIs, the selected 54 COVID-19 concepts in SPOKE
were mapped to 68 UMLS CUIs. However, the possible
discrepancy on the coverage of concept types and the missing
concept mappings imply that not all concepts appearing in the
Pubmed paths could be mapped to SPOKE concepts.

Four scenarios could be seen based on the presence or
absence of each path or parts of each path in both graphs.
Table VI presents the different scenarios and the example
paths, and Figure 10 summarizes the counts for each scenario.

IX. IMPLICATIONS

COAST is the first demonstration of a graph analysis running
at just over 1 exaflop/s. The entire PubMed graph with co-
occurrences, occurrences, and citations is completely connected,
which means a path always exists between any pair of CUIs
through paper citations. A biomedical research study built
around a hypothesis and with finite available resources, by
its inherent nature, is of limited scope. Thus, the ability
to establish paths between any pair of vertices within the
richness of PubMed in a reasonable time has the potential to
revolutionize biomedical research and apply national research
funds more effectively. Furthermore, the existence of paths
in SPOKE and its non-existence in the co-occurrence graph
of PubMed will naturally lead to a deeper inquiry of most
published research studies. This observation also supports the
relevance of literature-based discovery, which is a process
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concerned with uncovering previously unknown relationships
between existing concepts from the scientific literature.

SPOKE and PubMed present two different perspectives of
relations among medical concepts. It is an open problem to
determine a scientific way to integrate the knowledge from
PubMed into SPOKE. However, it is also accepted that a large
corpus like PubMed can enhance scientific datasets and SPOKE
because the latter are human curated. On the algorithmic front,
for truly sparse problems with larger separators, we envision a
distributed, communication-avoiding supernodal realization of
COAST based on prior results for sparse Gaussian elimination.
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[8] E. Solomonik, A. Buluç, and J. Demmel, “Minimizing communication
in all-pairs shortest paths,” in Proceedings of the 27th IPDPS, 5 2013.
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XI. APPENDIX

A. Data Pipeline

A graph is a universal language that can describe many
physical or social phenomena by representing relationships
between constituents. Graph-based analysis relies on knowledge
graphs and graph-structured data to integrate information from
multiple domains (e.g., biology, chemistry, natural language
processing). In this study, we focus on running the expensive
computations required for a knowledge graph on HPC resources.
As shown in Figure 11, we integrate the text data from Pubmed
and CORD-19 publications along with the SPOKE knowledge
graph on MongoDB, a key-value storage solution. We represent
the integrated data as a knowledge graph in a sparse matrix
representation by using vertex and edge encoding techniques as
detailed in Section III-C. This data is stored on the GPFS/Lustre
network storage connected to the HPC computing systems. This
matrix is consumed by COAST code, and the output is typically
hundreds of terabytes using ADIOS/MPIIO. Because this is
a massive and dense dataset, tuning graph databases that are
designed for holding sparse information can be difficult. Hence,
we will directly expose service APIs to query this dense output
on GPFS/Lustre.
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Fig. 11: Data pipeline and workflow.

B. Communication Optimizations

The COAST algorithm performs a high volume of communi-
cation in the O( n

2

Px
+ n2

Py
). The communication complexity is

explained in Section IV-D. This means that during scaling to
large nodes, we will spend more time in communication than
in computation. To mitigate this issue, we propose (1) look
ahead to accelerate the critical path of diagonal update and
broadcast, (2) ring broadcast protocol, (3) rank mapping, and
(4) optimizing intranode communication.

1) Look-Ahead Technique
Recall that the most expensive communication operation

is PANELBCAST, and the most expensive compute operation
is OUTERUPDATE in any iteration of Listing 1. Look-ahead
technique overlaps the two operations. We use the idea of
breaking the dependency between the k and k+1 iterations to
achieve the overlap.

Consider the execution of the k-th iteration of Listing 1.
Let us assume that we have performed the PANELBCAST(k).
Each process has received k-th horizontal and vertical panels
and is ready to perform the OUTERUPDATE(k). Then, any

process in Pr(k+1) and Pc(k+1), except Pk+1,k+1, will first
perform the OUTERUPDATE(k) on the k+1-th panels and wait
for the DIAGBCAST(k+1). Then, the process Pk+1,k+1 will
perform OUTERUPDATE(k) on the block Ak+1,k+1, followed
by DIAGUPDATE(k+1) and DIAGBCAST(k+1). Following
that, we perform the OUTERUPDATE(k) on the k+1-th panels.

After DIAGBCAST(k+1), processes in Pr(k+1) and
Pc(k+1) can perform the PANELUPDATE(k+1) and initiate
PANELBCAST(k+1). Subsequently, all the processes on
Pr(k+1) and Pc(k+1) perform the OUTERUPDATE(k) on
the remaining matrix. Meanwhile, all other processes initiate
OUTERUPDATE(k) on the GPU, and the host CPU
waits for the PANELBCAST(k+1). At the end of this
step, all processes have finished PANELBCAST(k+1) and
OUTERUPDATE(k). We perform PANELBCAST(k+2) and
OUTERUPDATE(k+1) concurrently in the next iteration.

The look-ahead COAST requires some small block SRGEMM
to be invoked and also additional buffer management. Sao et
al. [21] present the algorithmic realization of the PARALLELFW
algorithm with a look-ahead technique.

2) Ring Broadcast over Tree-Based Broadcast
The traditional library provided by MPI Bcast may not be

the most efficient for our application because it uses a kd-tree
pattern (a.k.a., hyper-cube algorithm) that costs logP (α+wβ)
for broadcasting w units of data among P processes. Such
an algorithm balances latency (α term) and bandwidth (β
term) costs. In contrast, bandwidth is of greater concern for
our application, thus a broadcast based on a ring pattern that
costs (P − 1)α + wβ is optimal for bandwidth but worse
for latency. The latency cost in the ring broadcast can be
hidden by pipelining broadcasts from different iterations. We
implemented a non-blocking version of the ring broadcast that
we use in COAST. In this paper, we also focus on the Ring-2
Modified (R2M) implementation to help scale to Frontier’s
9,400 nodes. In the case of R2M, the p processes are split
into two groups. As one may expect, first 0 → 1, and then
the leftover p− 1 processes are divided into two equal parts.
After the division, processes 2 and p/2 act as sources for two
rings. That is, 2 sends data to 3, 3 sends data to 4, and so on
until p/2− 2 sends data to p/2− 1. Simultaneously, another
process communicates concurrently in its own ring as process
p/2 sends data to p/2+ 1, p/2+ 1 sends data to p/2+ 2, and
so on until p− 1 sends data to p.

3) Optimal Rank Placement
When creating a 2D logical process grid using MPI, all

the MPI ranks within a node will be placed in a process row
or process column by default. However, this rank placement
is suboptimal when considering data transfer via the NIC in
a single node. To minimize the data transfer via NIC, we
must have ranks within a node arranged in a 2D grid with
the same aspect ratio as the logical process grid. In other
words, if Qr × Qc ranks per physical node with a total of
Px × Py logical MPI processes, then NIC data transfer is
minimized when Qr

Px
≈ Qc

Py
. In the case of Frontier, every

node has four separate disjoint NICS connected directly to the
Slingshot network. For COAST to utilize all four NICS and



communicate concurrently, we use the optimal rank placements
that respect latin square ordering—any process rows or process
columns will have all NICs working to make effective use of
the ring broadcast. At any given instance, every GCD will be
participating in a communication directly through the Slingshot.
Every process owns the portion of the global data in such a
way that it optimally participates in the ring broadcast.

4) Optimizing Intranode Communication
Unlike Summit, Frontier’s NICs are directly connected

to GPUs. Hence, communicating the GPUs buffers directly
through GPU-aware MPI will be faster than communicating
through the CPU because this will avoid unnecessary GPU-
CPU-GPU data movement. Hence, in this paper, we explore
the GPU-aware MPI support provided by Cray-MPICH=8.1.2.
Frontier enables GPU-aware MPI through a dedicated module
called craype-accel-amd-gfx90a. We can enable or
disable GPU-aware MPI through an environment variable. We
observe that GPU-aware MPI exhibits improved performance
over the CPU-based ring broadcast Section VI-E.

C. OPTSSRGEMM-NT:

We took the MAGMA kernel as the starting point and
produced a fast implementation of the min-plus kernel
OPTSSRGEMM-NT by using vectorization, pipelining, and
autotuning.

1) Vectorization
First, we restructured the kernel to use the float2 data type.

This makes it easier for the compiler to map the computation to
packed FP32 instructions. Figure 12 shows the device function
that implements the innermost loops of our kernel. In this case,
the float2 type was enough to produce the packed add
instruction. At the same time, the compiler successfully reduced
the two calls to fminf to a single min3 instruction. This can
be verified by inspection of the assembly code produced when
compiling with the --save-temps flag.

__device__
void compute_minplus(float2 a[THR_M],

float2 b[THR_N],
float c[THR_N][THR_M])

{
for (int j = 0; j < THR_N; ++j)

for (int i = 0; i < THR_M; ++i)
c[j][i] = fminf(fminf((a[i]+b[j]).x,

(a[i]+b[j]).y),
c[j][i]);

}

Fig. 12: Device function implementing the vectorized loops of
the min-plus kernel.

2) Pipelining
Next, we structured our code to allow for software pipelining,

which is a solution popularized by the CUTLASS library
[22]. We refrained from pipelining the accesses to shared
memory. Instead, we relied on having multiple waves in flight.
By scheduling shared memory instructions from some waves
simultaneously with arithmetic instructions from other waves,
the CU can hide both the cost of issuing shared memory
instructions and the cost of the associated access latency. At
the same time, we did implement explicit pipelining of reads

TABLE VII: Real-world datasets from SuiteSparse matrix
collection [17].

Dataset Label Rows NNZ Kind
Weighted Graphs

human_gene1 HG1 2.23×104 2.47×107 Undirected
mycielskian15 MY 2.46×104 1.11×107 Undirected
human_gene2 HG2 1.43×104 1.81×107 Undirected

Scientific Problems

Zd_Jac3 ZD 2.28×104 1.92×106 Simulation
nd6k ND6K 1.80×104 6.90×106 2D/3D mesh
pkustk07 PS7 1.69×104 2.42×106 Structural

from the global memory because the associated latency is
large and more difficult to hide. The solution is implemented
by maintaining two sets of local arrays and two sets of
shared memory buffers and alternating accesses between even
and odd iterations. We consider this to be a fairly balanced
implementation in terms of performance and complexity trade-
offs.

3) Autotuning
Being derived from MAGMA, the kernel inherits MAGMA’s

blocking factors (Figure 4a), and these factors must be tuned
for maximum performance. We did this by applying simple,
brute-force tuning (i.e., by generating a large number of kernels
and testing them for best performance). We trimmed the search
space presented by the blocking factors by applying a set of
simple constraints listed in Figure 4b.

Constraints 1–3 force the number of work items per group
to be between 256 and 1,024, and be divisible by the wave
size, which is 64 in the CDNA™ 2 architecture. Constraint 4
prevents us from exceeding the 64 KB shared memory size of
the CDNA™ 2 devices. The remaining constraints (5–10) force
mutual divisibility of dimensions to eliminate any potential
branching/divergence situations.

The result is 25,894 viable kernels, which must be
compiled and timed. We tune for one combination of
Trans(T)/NoTrans(N) arguments at a time. To speed up the
tuning process, we dispatch each sweep to a moderate number
of nodes of the Frontier system (between 16 and 32) using
a HIP port of the Benchtuning OpeN Software Autotuning
Infrastructure software [23]. The largest job launched in the
course of this work took 7 minutes using 32 nodes (256 GCDs).
Table IV shows the tuned values of the blocking factors for
the packed FP32 SRGEMM kernel, OPTSSRGEMM-NT.

D. Realworld Dataset Experiments on Single Node:

1) APSP Baselines
There are no off-the-shelf distributed scalable FW algorithms

available in the public domain. Hence, we compare the single-
node performance of our algorithm with the following single-
node implementations:
• BLOCKEDFW-CPU (FW-CPU) : This implementation is

an efficient multithreaded OpenMP variant that performs n3

operations.
• DIJKSTRA: This algorithm performs a single-pair shortest

path from all the vertices. It has the lowest asymptotic
complexity of all the methods considered here. Hence, we



consider this as the baseline in Figure 13 for comparison
against other baseline algorithms.

• BOOSTDIJKSTRA (Boost-D): This APSP implementation
uses DIJKSTRA’s algorithm from the popular Boost Graph
Library (BGL) [24]. BGL also provides a BFW that is slower
than BOOSTDIJKSTRA, so we omit it.

• ∆-STEP (Galois): We use the parallel ∆-stepping variant of
DIJKSTRA’s algorithm [25] for computing the single-source-
shortest path in Johnson’s algorithm. We use the parallel
∆-stepping algorithm from the Galois Graph library [26].
The ∆-stepping requires tuning a ∆ parameter for each
input graph. Our ∆-STEP-based APSP is autotuned—we try
different values of ∆ during the first few SSSP calls and
pick the best ∆ for the rest of the execution.
2) Test Graphs
Our graph datasets for the single-node experiments use the

real-world graphs shown in Table VII. We chose the graphs to
be sufficiently large while running in a reasonable time on a
single node. The DIJKSTRA and ∆-STEP algorithms work on
graphs with positive edge weights, so we modify the adjacency
matrices from real-world and synthetic graphs to have only
positive entries.

3) Single Node Performance Evaluation
We compared SSRGEMM against other single-node imple-

mentations using the datasets from Table VII, which were
taken from the Suite Sparse Matrix Collection [17]. We either
developed or obtained open-source baselines for these exper-
iments. The baselines were chosen from different categories,
such as sparse algorithms on CPU and dense algorithms on
CPU. The CPU algorithms were executed on a single Frontier
node with 64 OpenMP threads and on a single Summit node
with 42 OpenMP threads. Similar to other sections, we used
only one GCD of Frontier and one GPU on Summit. We are
reporting the wall clock time in seconds. The results appear in
Figure 13.

Despite the difference in the floating-point operation rates
between CPU and GPU, we believe the comparison reflects the
availability of the current state-of-the-art algorithms on different
architectures—AMD EPYC 7A53 vs. POWER9, MI250X vs.
NVIDIA Volta, and Frontier vs. Summit.

None of the other implementations are competitive with
COAST. For the FW-CPU with the mycielskian15 dataset,
COAST is 23× faster on Frontier and COAST on Frontier is
1.59× faster over Summit.

DIJKSTRA uses a priority queue-based implementation that
performs equally well on POWER9 and AMD EPYC. We
expect ∆-STEP (Galois) to be the slowest because it is neither
work optimal nor scalable. Both ∆-STEP (Galois) and FW-
CPU perform better on the AMD EPYC 7A53 than on the
POWER9 owing to increased bandwidth and throughput on
the AMD CPU.

Similarly, BOOSTDIJKSTRA is not competitive to our imple-
mentation of DIJKSTRA for Frontier or Summit. DIJKSTRA can
be better than FW for sparse graphs. In our case, most of the
datasets are relatively dense, and DIJKSTRA does not perform as
well as GPU-accelerated FW. Our DIJKSTRA implementation

is CPU based, and we could not find an efficient priority queue
implementation for GPUs to implement DIJKSTRA on MI250X
and NVIDIA Volta.

Both Summit and Frontier have fat nodes with large amounts
of memory—512 GB in each node. In most cases, the speedup
of MI250X over CPU on Frontier is not as significant as it is
on Summit. This is because the AMD EPYC CPUs on Frontier
have higher throughput and increased bandwidth.

E. Example Paths on Pubmed and SPOKE

The biomedical concepts in the Pubmed graph use CUIs as
defined by the UMLS, whereas SPOKE uses identifiers from
multiple ontologies and taxonomies.

The Pubmed graph is composed of two types of vertices.
(1) Concept vertices represent unique biomedical terms (e.g.,

drugs, genes, diseases, symptoms) and are standardized using
the UMLS [20]. There are 127 different concept types and over
290,000 unique concepts mapped to their CUIs. (2) Abstract
vertices represent the Pubmed and CORD-19 abstracts. The
vertices can be connected in three different ways.

a) Concept-to-concept relations (co-occurences)
The connections between concepts represent relationships

described in these abstracts. For the shortest path computation,
we assign these edges a weight, which is calculated as the
number of times the two concepts appear together in a
predication divided by the total number of predictions in which
these concepts appear.

b) Concept-to-abstract relations (occurences)
The connections between abstracts and concepts represent

occurrence of concepts in abstracts. For the shortest path
computation, we assign these edges a weight that represents
the number of times a concept, c, appears in an abstract, p,
divided by the total number of concepts that appear in p.

c) Abstract-to-abstract relations (citations)
The connections between abstracts represent citation relations

between them. For the shortest path computation, we treat
citations as undirected edges and assign them a weight
calculated as 1/(Np1 + Np2), where N represents the total
number of citation relations of p.

For the shortest path calculation, we apply − log to have
weights where lower values represent higher importance. This
results in 213 million relations: 14 million relations between
concepts, 196 million relations between papers and concepts,
and 3 million citation relations between papers. Additional
information about how the graph was produced is provided in
our data readme [13].

Although, the SPOKE v3 knowledge graph has 19 vertex
types, the mappings to CUIs can be built for 13 vertex types:
Anatomy, BiologicalProcess, CellType, CellularComponent,
Compound, Disease, Gene, MolecularFunction, Organism,
PharmacologicClass, Protein, SideEffect, and Symptom. Three
methods are used to create the mappings based on the
vocabularies of the vertex types:
(1) No mapping needed: CUIs are the vertex identifiers in

SPOKE. The vertex type in this category is SideEffect.



frontier summit
system

10
1

10
2

tim
e

dataset = Zd_Jac3

frontier summit
system

10
2

10
3

dataset = human_gene1

frontier summit
system

10
1

10
2

dataset = human_gene2

frontier summit
system

10
1

10
2

10
3 dataset = mycielskian15

frontier summit
system

10
1

10
2

dataset = nd6k

frontier summit
system

10
1

10
2

dataset = pkustk07

algoname
Dijkstra
BoostD
FW-CPU
Galois
COAST

Fig. 13: Time to solution for different algorithms on real-world datasets on Frontier and Summit.

(2) Direct mapping: SPOKE identifiers or vertex properties have
the vocabularies covered by UMLS. The vertex types that
have identifiers in SPOKE that use vocabularies covered by
UMLS (e.g., MeSH, Gene Ontology, NCBI Taxonomy) are
BiologicalProcess, CellularComponent, MolecularFunction,
Organism, PharmacologicClass, and Symptom. Also, some
Compound vertices use the Drug Bank IDs as vertex
identifiers. Vertex properties in SPOKE sometimes provide
vocabularies covered by UMLS. Some disease vertices in
SPOKE have MeSH IDs.

(3) Indirect mapping: Cross-references are used to
map the other vertex identifiers to vocabularies
covered by UMLS. For vertex type Gene, NCBI’s
Homo_sapiens.gene_info file is used to map
GeneID to HGNC [27]. For Compound, UniChem is used
to map ChEMBL IDs to either Drug Bank or RxNorm [28].
For Protein, NCI Thesaurus’s NCIt-SwissProt mapping
is used to map UniProt IDs to NCIt [29]. Finally, for
vertex types Anatomy and CellType, the Ontology Lookup
Service is used to map UBERON and Cell Ontology IDs
to CUIs, NCIts, or FMA [30].

In Table VI, we compare the Pubmed and the SPOKE paths
for the different scenarios based on the presence and absence
of each path or parts of each path in both graphs.


