
Scalable All-pairs Shortest Paths for Huge Graphs on Multi-GPU
Clusters

Piyush Sao†, Hao Lu†, Ramakrishnan Kannan†, Vijay Thakkar‡, Richard Vuduc‡, Thomas Potok†∗
†Oak Ridge National Laboratory, Oak Ridge, TN
‡ Georgia Institute of Technology, Atlanta, GA

USA

ABSTRACT

We present an optimized Floyd-Warshall (Floyd-Warshall) algo-
rithm that computes the All-pairs shortest path (Apsp) for GPU
accelerated clusters. The Floyd-Warshall algorithm due to its
structural similarities to matrix-multiplication is well suited for
highly parallel GPU architectures. To achieve high parallel effi-
ciency, we address two key algorithmic challenges: reducing high
communication overhead and addressing limited GPU memory. To
reduce high communication costs, we redesign the parallel Floyd-
Warshall (a) to expose more parallelism, (b) aggressively overlap
communication and computation with pipelined and asynchronous
scheduling of operations, and (c) tailored MPI-collective. To cope
with limited GPU memory, we employ an offload model, where the
data resides on the host and is transferred to GPU on-demand. The
proposed optimizations are supported with detailed performance
models for tuning. Our optimized parallel Floyd-Warshall imple-
mentation is up to 5× faster than a strong baseline and achieves
8.1 PetaFLOPS/sec on 256 nodes of the Summit supercomputer at
Oak Ridge National Laboratory. This performance represents 70%
of the theoretical peak and 80% parallel efficiency. The offload algo-
rithm can handle 2.5× larger graphs with a 20% increase in overall
running time.

CCS CONCEPTS

• Software and its engineering→ Massively parallel systems; •
Theory of computation→ Shortest paths; •Computingmethod-

ologies→Graphics processors; Massively parallel and high-performance
simulations.

KEYWORDS

Floyd-Warshall algorithm, all-pair shortest path, semi-ring algebra,
GPU computing, distributed algorithm

∗This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accept-
ing the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or re-
produce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide pub-
lic access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Corresponding author : Piyush Sao, email: saopk@ornl.gov

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8217-5/21/06. . . $15.00
https://doi.org/10.1145/3431379.3460651

ACM Reference Format:

Piyush Sao†, Hao Lu†, Ramakrishnan Kannan†, Vijay Thakkar‡, Richard
Vuduc‡, Thomas Potok†. 2021. Scalable All-pairs Shortest Paths for Huge
Graphs on Multi-GPU Clusters. In Proceedings of the 30th International

Symposium on High-Performance Parallel and Distributed Computing (HPDC

’21), June 21–25, 2021, Virtual Event, Sweden. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3431379.3460651

1 INTRODUCTION

We consider the problem of computing all-pairs shortest paths
(Apsp) for a dense graph in a distributed memory multi-GPU cluster.
The Apsp is a fundamental graph problem with many applications
in data analytics on knowledge graphs, traffic routing and simula-
tion, and network design, to name a few. For instance, in knowledge
graph analytics, the relationship mining problems become comput-
ing Apsp in a large and dense graph [22]. This calculation requires
massive computing power and aggregate memory capacity only
available in a multi-GPU cluster like the Summit supercomputer
at Oak Ridge National Laboratory. Floyd and Warshall (Floyd-
Warshall) is the algorithm of choice for the Apsp computation
on dense graphs. The Floyd-Warshall algorithm, due to its struc-
tural similarities with matrix multiplication, is also well suited for
a massively parallel GPU architecture. In this paper, we present a
highly scalable distributed memory Apsp for multi-GPU clusters at

larger problem sizes.

Our baseline is a strong one, being the parallel and blocked vari-
ant of Floyd-Warshall listed in Algorithm 3 with GPU accelera-
tion using the semi-ring matrix multiplication kernels (SRGEMM)
available in cuASR [40]. We identify two key algorithmic challenges
in achieving high parallel efficiency in the baseline. First, we need
to reduce or hide the communication cost to scale to a large num-
ber of processors. However, the baseline algorithm has an implied
bulk-sequential dependence between the major steps of each it-
eration, which makes it difficult to overlap communication with
computation. Second, the baseline algorithm performs Apsp only
using GPU memory. Hence, the largest feasible problem sizes for
running Apsp is limited by the available aggregate GPU memory.
Beyond these algorithmic challenges, extracting high performance
requires a careful mapping of algorithms to hardware and choosing
the appropriate algorithmic parameters.

We relax the bulk-sequential dependence by exploiting a finer-
grained dependence structure, which in turn reduces communi-
cation costs. This tactic allows us to expose more parallelism and
effectively overlap communication and computation via pipelined
and asynchronous scheduling. Additionally, we further reduce the
communication costs using a customized MPI-collective tailored

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

121

http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1145/3431379.3460651
https://doi.org/10.1145/3431379.3460651

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden Piyush Sao et al.

to Floyd-Warshall-Apsp. Finally, we overcome the memory lim-
itation by using an offload model. In this technique, all the data
resides in the host, and the data is transferred for diagonal-block
updates and min-outer products to the GPU on an as-needed basis.
We carefully design the pipeline scheme to mask host-device data
transfers.

We enhance the baseline algorithm with these optimizations to
arrive at the following two flavors of ParallelFw , targeting both
parallel and problem scalability:
• Communication Optimized ParallelFw (Co-ParallelFw): This
flavor uses several algorithmic tools to hide the cost of commu-
nication and latency bound operations.
• Memory-Efficient ParallelFw (Me-ParallelFw): This strategy
allows us to solve larger problems that do not fit in aggregate
GPU memory with negligible performance overhead.
We derive detailed performance models for both variants, which

guides our performance tuning for the Summit system. Our per-
formance models are general and apply to other accelerated super-
computer systems as well.

We evaluate the performance of individual optimizations and
the proposed algorithmic variants on the Summit supercomputer.
The optimized Co-ParallelFw is up to 5× faster than the base-
line on 256 nodes (Figure 8). The Co-ParallelFw variant achieves
8.1 PetaFLOPS/sec on 256 nodes, which is close to 70% of the the-
oretical peak and equates to 80% parallel efficiency. This theoret-
ical efficiency is similar to the HPL benchmark on Summit. With
proper parameter tuning, Me-ParallelFw achieves 80% of the Co-
ParallelFw. That permits handling of graphs that are 2.5-times
larger than the baseline’s capability with only a 20% increase in
overall running time. In particular, we are able to solve an Apsp
on a graph with 1.66 million vertices, which has a roughly 10 TB
memory footprint for the output, on 64 GPU-enabled nodes.

2 BACKGROUND

Table 1: Notation

Category Symbol Description

Processes

𝑃 Number of MPI Processes
𝑃𝑟 , 𝑃𝑐 Row and Column Processes
𝑃𝑟 (𝑘) (𝑘 mod 𝑃𝑟)th Process Row
𝑃𝑐 (𝑘) (𝑘 mod 𝑃𝑟)th Process Column
𝐾𝑟 , 𝐾𝑐 Node grid dimensions
𝑄𝑟 , 𝑄𝑐 Intranode process grid

Matrices 𝐴 Distance matrix of the Graph
𝐴(:, 𝑘) 𝐴(𝑘 : 𝑛, 𝑘)
𝐴(𝑘, :) 𝐴(𝑘, 𝑘 + 1 : 𝑛) : kth 𝐴 panels

Graph 𝐺 = (𝑉 , 𝐸) Input Graph
𝑛,𝑚 Number of vertices and edges

In this section, we describe the baseline sequential and par-
allel Floyd-Warshall algorithm. The key concepts include the
min-plus semi-ring formulation of Apsp and baseline architecture-
independent performance models. In Table 1 we summarize the
notations.

Algorithm 1 Floyd-Warshall algorithm for Apsp

def 𝐹𝑙𝑜𝑦𝑑𝑊𝑎𝑟𝑠ℎ𝑎𝑙𝑙 (𝐺 = (𝑉 , 𝐸)):
𝑛 ← dim(𝑉)

Dist[𝑖, 𝑗] =

{
𝑤𝑖, 𝑗 if(𝑖, 𝑗) ∈ 𝐸
∞ otherwise

for 𝑘 in {1, 2 . . . , 𝑛}:
for 𝑖 in {1, 2 . . . , 𝑛}:

for 𝑗 in {1, 2 . . . , 𝑛}:
Dist[𝑖, 𝑗] = min {Dist[𝑖, 𝑗], Dist[𝑖,𝑘]+Dist[𝑘,𝑗]}

2.1 Graph All Pair Shortest Path (Apsp)

Problem

Notation and terminology. Let𝐺 = {𝑉 , 𝐸} be an directedweighted
graph with a vertex set𝑉 containing 𝑛 = |𝑉 | vertices or nodes, edge
set 𝐸 with𝑚 = |𝐸 | edges. The weight𝑊 : 𝐸 ↦→ R ∪∞ denotes the
edge weights. The𝑊 is stored as a matrix so that𝑤𝑖, 𝑗 denotes the
the distance between the 𝑖-th vertex 𝑣𝑖 ∈ 𝑉 and 𝑗-th vertex 𝑣 𝑗 if if
{𝑖, 𝑗} ∈ 𝐸; otherwise,𝑤𝑖, 𝑗 = ∞. A path between two vertex 𝑣𝑠 and
𝑣𝑑 is a sequence of edges 𝑒 ∈ 𝐸 starting that starts at vertex 𝑣𝑠 and
ends at vertex 𝑣𝑑 . The length of path is the sum of edge weights𝑤𝑖, 𝑗
in a path. A shortest path between two vertex 𝑣𝑠 and 𝑣𝑑 is the path
with the minimal length. The length of the shortest path between
two vertex 𝑣𝑠 and 𝑣𝑑 is called distance denoted as Dist[𝑠, 𝑑].

Apsp Computation. Apsp is the simultaneous computation of the
shortest paths between all pairs of vertices in a graph. During the
computation of Apsp, Floyd-Warshall maintains and updates a
2-D array of distances, Dist. Each entry Dist[𝑖, 𝑗] holds the current
shortest distance between 𝑣𝑖 and 𝑣 𝑗 discovered so far, with its value
at the termination of the algorithm being the shortest such distance.
We will assume for simplicity that the graph 𝐺 consists of a single
connected component, in which case the Dist eventually becomes
fully dense; however, our implementation will work when there
are multiple connected components.

2.2 Sequential Floyd-Warshall algorithm

Floyd-Warshall uses a dynamic programming approach to
computing Apsp, as shown in algorithm 1. It initializes Dist with
the input weights𝑊 . Then, in the 𝑘-th iteration, it checks for all
pairs of vertices 𝑣𝑖 and 𝑣 𝑗 if there is a shorter path between them
via the intermediate vertex 𝑣𝑘 . If so, Floyd-Warshall updates
Dist[𝑖, 𝑗]. Therefore, Dist[𝑖, 𝑗] after 𝑘 steps, which we denote by
Dist𝑘 (𝑖, 𝑗), may be defined recursively as

Dist𝑘 [𝑖, 𝑗] ← min
{
Dist𝑘−1 [𝑖, 𝑗],Dist𝑘−1 [𝑖, 𝑘] + Dist𝑘−1 [𝑘, 𝑗]

}
.

In Algorithm 1, this computation is done in place by overwriting
Dist𝑘 [𝑖, 𝑗] in place of Dist𝑘−1 [𝑖, 𝑗].

At any 𝑘𝑡ℎ iteration, Floyd-Warshall maintain the invariance
that Dist[𝑖, 𝑗] holds the current shortest distance between 𝑣𝑖 and
𝑣 𝑗 with all intermediate vertices 𝑘 ∈ (𝑣1, 𝑣2, · · · , 𝑣𝑘) so far. This
invariance is always satisfied when there are no cycles of negative
weight sum.

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

122

Scalable APSP on multi-GPU clusters HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

Algorithm 2 A blocked version of Floyd-Warshall algorithm

def 𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝐹𝑊 (𝐴,𝑏):
Here 𝐴 is input distance matrix, 𝑛 = dim(𝐴) and
𝑏 is the block size and 𝑛𝑏 ← 𝑛

𝑏
for 𝑘 in {1, 2, . . . , 𝑛𝑏 }:

𝑫𝒊𝒂𝒈𝒐𝒏𝒂𝒍 𝑼𝒑𝒅𝒂𝒕𝒆
𝐴(𝑘, 𝑘) ← Floyd-Warshall (𝐴(𝑘, 𝑘))
𝑷𝒂𝒏𝒆𝒍 𝑼𝒑𝒅𝒂𝒕𝒆
𝐴(𝑘, :) ← 𝐴(𝑘, :) ⊕ 𝐴(𝑘, 𝑘)⊗𝐴(𝑘, :)
𝐴(:, 𝑘) ← 𝐴(:, 𝑘) ⊕ 𝐴(:, 𝑘)⊗𝐴(𝑘, 𝑘)
𝑴𝒊𝒏−𝒑𝒍𝒖𝒔 𝑷𝒓𝒐𝒅𝒖𝒄𝒕
for 𝑖 in {1, 2 . . . , 𝑛𝑏 }:
for 𝑗 in {1, 2 . . . , 𝑛𝑏 }:
𝐴(𝑖, 𝑗) ← 𝐴(𝑖, 𝑗) ⊕ 𝐴(𝑖, 𝑘)⊗𝐴(𝑘, 𝑗)

2.3 Min-Plus Matrix Multiplication

Apsp may be understood algebraically as computing the matrix
closure of the weight matrix,𝑊 , defined over the tropical semir-
ing [14]. In more basic terms, let ⊕ and ⊗ denote the two binary
scalar operators

𝑥 ⊕ 𝑦 := min(𝑥,𝑦)
𝑥 ⊗ 𝑦 := 𝑥 + 𝑦,

where 𝑥 and 𝑦 are real values or ∞. Next, consider two matrices
𝐴 ∈ R𝑚×𝑘 and 𝐵 ∈ R𝑘×𝑛 . The Min-Plus product 𝐶 of 𝐴 and 𝐵 is

𝐶𝑖 𝑗 ←
⊕∑
𝑘

𝐴𝑖𝑘 ⊗ 𝐵𝑘 𝑗 = min
𝑘

(
𝐴𝑖𝑘 + 𝐵𝑘 𝑗

)
.

This product is the analogue of matrix-matrix multiplication over
the reals.

2.4 Blocked Floyd-Warshall algorithm

Let us divide Dist into 𝑛𝑏 × 𝑛𝑏 blocks, each of size 𝑏 × 𝑏 (i.e.,
𝑛𝑏 = 𝑛

𝑏
). If 𝐴𝑖 𝑗 denote the (𝑖, 𝑗) block of 𝐴, where 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑏 ,

a blocked version of Floyd-Warshall, called BlockedFw, can
carry out the same Apsp computation as Floyd-Warshall in the
following three steps as illustrated in Algorithm 2
• Diagonal Update (DiagUpdate): Perform the classic Floyd-
Warshall algorithm on a diagonal block, 𝐴𝑘𝑘 .
• Panel Update (PanelUpdate): Update the 𝑘-th block row
and column. For any block 𝐴(𝑘, 𝑗), 𝑗≠𝑘 in the block row, the
update is a Min-Plus multiply with 𝐴𝑘𝑘 from the left, and for
block𝐴(𝑖, 𝑘) on the 𝑘-th block column isMin-Plusmultiply with
𝐴𝑘𝑘 from right, i.e.,

𝐴(𝑘, 𝑗) ← 𝐴(𝑘, 𝑗) ⊕ 𝐴(𝑘, 𝑘)⊗𝐴(𝑘, 𝑗) 𝑗 ≠ 𝑘

𝐴(𝑖, 𝑘) ← 𝐴(𝑖, 𝑘) ⊕ 𝐴(𝑖, 𝑘)⊗𝐴(𝑘, 𝑘) 𝑖 ≠ 𝑘

Here, ⊕ denotes element-wise application of the corresponding
scalar operator, and ⊗ denotes Min-Plus product.
• MinPlus Outer Product: Perform the outer product of 𝑘-th
block row and block column, and update all the remaining blocks
of matrix 𝐴

𝐴(𝑖, 𝑗) ← 𝐴(𝑖, 𝑗) ⊕ 𝐴(𝑖, 𝑘)⊗𝐴(𝑘, 𝑗) 𝑖, 𝑗 ≠ 𝑘.
This step is analogous to a Schur-complement update in LU or
Cholesky factorization.

Algorithm 3 Parallel Floyd-Warshall algorithm on 2D process
grid

def 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝐹𝑊 (𝐴, 𝑃 = 𝑃𝑟 × 𝑃𝑐):
𝐴 is distributed in block cyclic fashion
my process Id is 𝑝𝑖𝑑
On each MPI process 𝑝𝑖𝑑 do in parallel:
for 𝑘 in {1, 2 . . . , 𝑛𝑏 }:

#Diagonal Update and Broadcast
if 𝑝𝑖𝑑= 𝑝𝑘,𝑘:
𝐴(𝑘, 𝑘) ← Floyd-Warshall (𝐴(𝑘, 𝑘))
Broadcast(𝐴(𝑘, 𝑘), 𝑃𝑟 (𝑘))
Broadcast(𝐴(𝑘, 𝑘), 𝑃𝑐 (𝑘))

#Panel Update and Broadcast
if 𝑝𝑖𝑑 ∈ 𝑃𝑟 (𝑘):

Receive(𝐴(𝑘, 𝑘), 𝑝𝑘,𝑘)
𝐴(𝑘, :) ← 𝐴(𝑘, :) ⊕ 𝐴(𝑘, 𝑘)⊗𝐴(𝑘, :)
Broadcast(𝐴(𝑘, :), 𝑃𝑐 (𝑝𝑖𝑑))

else :
Receive(𝐴(𝑘, :))

if 𝑝𝑖𝑑 ∈ 𝑃𝑟 (𝑐):
Receive(𝐴(𝑘, 𝑘), 𝑝𝑘,𝑘)
𝐴(:, 𝑘) ← 𝐴(:, 𝑘) ⊕ 𝐴(:, 𝑘)⊗𝐴(𝑘, 𝑘)
Broadcast(𝐴(:, 𝑘), 𝑃𝑟 (𝑝𝑖𝑑))

else :
Receive(𝐴(𝑘, :))

Min-plus outer product
for 𝑖 in {1, 2 . . . , 𝑛𝑏 }:

for 𝑗 in {1, 2 . . . , 𝑛𝑏 }:
if 𝑝𝑖𝑑 owns 𝐴(𝑖, 𝑗):
𝐴(𝑖, 𝑗) ← 𝐴(𝑖, 𝑗) ⊕ 𝐴(𝑖, 𝑘)⊗𝐴(𝑘, 𝑗)

2.5 Parallel Floyd-Warshall algorithm on 2D

process grid

The Algorithm 3 lists the Message Passing Interface (MPI) based
Floyd-Warshall algorithm for expressing the distributed memory
parallelism.

2.5.1 Data structure. The MPI processes are logically arranged in
a two-dimensional (2D) process grid of dimension 𝑝𝑥 × 𝑝𝑦 . On this
2D process grid, distributes the input matrix distance 𝐴 in a block
cyclic fashion, so the block 𝐴𝑖, 𝑗 resides in process with coordinate
(𝑖%𝑃𝑟, 𝑗%𝑃𝑐).

2.5.2 Two-D distributed ParallelFw algorithm. The outer loop of
ParallelFw proceeds as the BlockedFw. However, we have addi-
tional communication steps namelyDiagBcast and PanelBcast so
all the processes can perform the PanelUpdate and OuterUpdate.
The complete algorithm appears in Algorithm 3. The 𝑘-th iteration
ParallelFw involves following kernels

(1) DiagUpdate(𝑘): The process 𝑃𝑘𝑘 , which owns block 𝐴𝑘𝑘 ,
perform the DiagUpdate.

(2) DiagBcast(𝑘): The process 𝑃𝑘𝑘 broadcasts 𝐴𝑘𝑘 across its
process row 𝑃𝑟 (𝑘) and its process column 𝑃𝑐 (𝑘).

(3) PanelUpdate(𝑘): Each process in the 𝑃𝑟 (𝑘) performs left
multiplies 𝐴𝑘 : with 𝐴𝑘𝑘 and each process in 𝑃𝑐 (𝑘) performs
right multiplies 𝐴:𝑘 with 𝐴𝑘𝑘

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

123

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden Piyush Sao et al.

(4) PanelBcast(𝑘): Each process in 𝑃𝑟 (𝑘) broadcasts blocks of
𝐴𝑘 : to its process column, and each process in the 𝑃𝑐 (𝑘)
broadcasts blocks of 𝐴:𝑘 to its process row.

(5) OuterUpdate(𝑘): upon receiving𝐴𝑘 : and𝐴:𝑘 , each process
performs OuterUpdate on its local copy.

2.6 GPU Parallelization

Matrix multiplication over the tropical semiring is the core compute
kernel for As detailed in blocked Floyd-Warshall algorithm Sec-
tion 2.4. The (min, +) SRGEMM kernel follows similar acceleration
opportunities like classical General Matrix Multiplication (GEMM)
in terms of arithmetic intensity and data access pattern. The imple-
mentation [22], [40] realizes Min-Plus SRGEMM by extending the
NVIDIA Cutlass open-source linear algebra framework [24]. Ac-
cording to [22, 40], the SRGEMM implementation achieves 6.81 TF/s
at single precision.

2.7 The cost of ParallelFw

2.7.1 Computation Cost. There are three computational steps in
ParallelFw: DiagUpdate, PanelUpdate and OuterUpdate. In
the blocked FW algorithm, the total number of floating-point opera-
tions is 2𝑛3 distributed among 𝑃 processes. Since the computation is
uniform and load-balanced, hence the cost of floating-point opera-
tions is 2𝑛3

𝑃
𝑡𝑓 , where 𝑡𝑓 is the cost of unit floating-point operations.

𝑇𝑐𝑜𝑚𝑝 =
2𝑛3

𝑃
𝑡𝑓

2.7.2 Communication Cost. If 𝑏 is the block-size used for block-
cyclic data distribution, then algorithm-2 performs the 𝑛

𝑏
outer

loop iterations. In each of the iterations, each process participates
in two broadcasts 𝑛𝑏

𝑃𝑥
across process row and 𝑛𝑏

𝑃𝑦
across process

column. In the ring broadcast, the total cost of the two broadcast is
2𝑡𝑙 + 𝑡𝑤 (𝑛𝑏𝑃𝑥 +

𝑛𝑏
𝑃𝑦
), where 𝑡𝑙 is the setup cost of sending a message

and 𝑡𝑤 is cost of sending a unit float word. Since the outer iteration
runs for 𝑛

𝑏
iterations, hence the total communication cost is 2𝑛

𝑏
𝑡𝑙 +

𝑡𝑤 (𝑛
2

𝑃𝑥
+ 𝑛2

𝑃𝑦
).

𝑇𝑐𝑜𝑚𝑚 = 2
𝑛

𝑏
𝑡𝑙 + 𝑡𝑤 (

𝑛2

𝑃𝑥
+ 𝑛

2

𝑃𝑦
)

So the total cost of the ParallelFw is given by

𝑇𝑓 𝑤 =
2𝑛3

𝑃
𝑡𝑓 + 2

𝑛

𝑏
𝑡𝑙 + 𝑡𝑤 (

𝑛2

𝑃𝑥
+ 𝑛

2

𝑃𝑦
) (1)

Having described the baseline parallel Floyd-Warshall in Algo-
rithm 3, in the next two sections, we will describe, communication
and single node optimizations respectively. From the Algorithm 3,
we can witness that there is a broadcast after panel and diagonal
updates. These collectives come with an inherent barrier that in-
hibits the scalability to the large number of nodes. To overcome
this problem, in Section 3, we describe techniques to hide or reduce
inter-node communication and unnecessary synchronization. In
Section 4, we describe optimization to improve the performance of
single node computation and hide the intra-node communication
between host and GPU.

Algorithm 4 Pipelined parallel Floyd-Warshall algorithm on 2D
process grid

def 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑑𝐹𝑊 (𝐴, 𝑃 = 𝑃𝑟 × 𝑃𝑐):
On each MPI process 𝑝𝑖𝑑 do in parallel:
First start the pipeline
diagUpdate(0); diagBcast(0);
panelUpdate(0); panelBcast(0);
for 𝑘 in {1, 2 . . . , 𝑛𝑏 }:

if 𝑘 ≠ 𝑛𝑏:
if 𝑝𝑖𝑑= 𝑝𝑘+1,𝑘+1:
𝐴(𝑘+1, 𝑘+1) ← 𝐴(𝑘+1, 𝑘+1) ⊕ 𝐴(𝑘+1, 𝑘) ⊗ 𝐴(𝑘, 𝑘+1)
𝐴(𝑘+1, 𝑘+1) ← 𝐹𝑊 (𝐴(𝑘+1, 𝑘+1))
Broadcast 𝐴(𝑘+1, 𝑘+1) to 𝑃𝑟 (𝑘+1) and 𝑃𝑐 (𝑘+1)
diagBcast(k+1)

if 𝑝𝑖𝑑 ∈ 𝑃𝑟 (𝑘+1):
#Look ahead update
𝐴(𝑘+1, :) ← 𝐴(𝑘+1, :) ⊕ 𝐴(𝑘+1, 𝑘)⊗𝐴(𝑘, :)
#Receives 𝐴(𝑘+1, 𝑘+1) from 𝑝𝑘+1,𝑘+1
diagBcast(k+1)
𝐴(𝑘+1, :) ← 𝐴(𝑘+1, 𝑘+1) ⊗ 𝐴(𝑘+1, :)
panelUpdate(k+1)

if 𝑝𝑖𝑑 ∈ 𝑃𝑐 (𝑘+1):
#Look ahead update
𝐴(:, 𝑘+1) ← 𝐴(:, 𝑘+1) ⊕ 𝐴(:, 𝑘)⊗𝐴𝑘,𝑘+1
#Receives 𝐴(𝑘+1, 𝑘+1) from 𝑝𝑘+1,𝑘+1
diagBcast(k+1)
𝐴(:, 𝑘+1) ← 𝐴(𝑘+1, 𝑘+1) ⊗ 𝐴(:, 𝑘+1)
panelUpdate(k+1)

Asynchronously launch SrGemm on GPU
OuterProduct(k)
#Waits for the next panels broadcast to finish
if 𝑘 ≠ 𝑛𝑏:

panelBcast(k+1)

3 OPTIMIZING COMMUNICATION IN

PARALLEL FLOYD-WARSHALL

In this section, we describe the design of Co-ParallelFw, which
improves the performance of Algorithm 3 by optimizing the commu-
nication by pipelined scheduling, aggressively overlapping commu-
nication with computation and increasing the asynchrony among
processes.

3.1 Data dependencies in ParallelFw :

Note that in Algorithm 3, all the steps within an iteration must
be performed sequentially. In each iteration the complete distance
matrix is updated, hence there is a bulk synchronous dependency
between the iterations. The ParallelFw formulation in Algo-
rithm 3 does not expose enough parallelism that allows overlapping
communication with computation. So it is required to break the
abstractions in Algorithm 3 to expose more parallelism.

To do so, consider the dependency between iteration 𝑘 and 𝑘+1.
The OuterUpdate will update the complete matrix in the 𝑘-th
iteration. However, the DiagUpdate and PanelUpdate of the 𝑘+1-
th iteration only require 𝑘+1 panels, not the whole matrix, hence we
can start DiagUpdate and PanelUpdate of the 𝑘+1-th iteration as

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

124

Scalable APSP on multi-GPU clusters HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

soon as the OuterUpdate update is performed on the 𝑘+1 panels.
Thus, we can break the data dependency between the 𝑘 and the
𝑘+1 iteration by prioritizing the OuterUpdate update on the 𝑘+1
panels.

3.2 Pipelined Scheduling

Recall that the most expensive communication operation is Panel-
Bcast and the most expensive compute operation is OuterUpdate
in any iteration of Algorithm 3. The goal of the pipelined scheduling
is to overlap the two operations. We use the idea of breaking the
dependency between 𝑘 and 𝑘+1 iteration to achieve the overlap as
follows.

Consider the execution of the 𝑘-th iteration of Algorithm 3. Let’s
assume that we have performed the PanelBcast(𝑘). So each pro-
cess has received 𝑘-th horizontal and vertical panels and is ready to
perform the OuterUpdate(𝑘). Then any process in 𝑃𝑟 (𝑘+1) and
𝑃𝑐 (𝑘+1) except 𝑃𝑘+1,𝑘+1, will first perform theOuterUpdate(𝑘) on
the 𝑘+1-th panels and wait for the DiagBcast(𝑘+1). Then the pro-
cess 𝑃𝑘+1,𝑘+1 will perform OuterUpdate(𝑘) on the block𝐴𝑘+1,𝑘+1,
followed by DiagUpdate(𝑘+1) and DiagBcast(𝑘+1). Following
that we perform the OuterUpdate(𝑘) on the 𝑘+1-th panels.

After DiagBcast(𝑘+1), processes in 𝑃𝑟 (𝑘+1) and 𝑃𝑐 (𝑘+1) can
perform the PanelUpdate(𝑘+1), and initiate
PanelBcast(𝑘+1). Subsequently, all the processes on 𝑃𝑟 (𝑘+1) and
𝑃𝑐 (𝑘+1) performs the OuterUpdate(𝑘) on the remaining matrix.
Meanwhile, all other processes initiate
OuterUpdate(𝑘) on the GPU and the host CPU waits for the
PanelBcast(𝑘+1). At the end of this step, all processes have fin-
ished PanelBcast(𝑘+1) and OuterUpdate(𝑘). Likewise we per-
form PanelBcast(𝑘+2) and
OuterUpdate(𝑘+1) concurrently in the next iteration.

In Algorithm 4 we show the pseudocode for the pipelined execu-
tion. To initialize the pipeline, we first perform the firstDiagUpdate.
DiagBcast, PanelUpdate and PanelBcast outside the main loop
and all subsequent iterations 𝑘 ,
PanelBcast(𝑘+1) and OuterUpdate(𝑘) concurrently.

3.3 Asynchronous execution using ring

broadcast

To further improve the scheduling and asynchrony among the
process, we use a variant of ring-broadcast in Co-ParallelFw.
The standard library broadcast has two limitations. First, it uses
a tree-based broadcast which is optimized for latency rather than
bandwidth. And second, it is synchronizing in nature, i.e. acts as a
barrier at the end of any iteration of Algorithm 4, so in the cases
where some network links are slower due to network contention
or if there are straggler processes then its impact propagates to all
the processes.

We overcome these limitations by using a ring-based broadcast
for PanelBcast instead of the library broadcast. In ring-broadcast,
any participating process 𝑝𝑖 relays the message to its neighboring
process 𝑝𝑖+1, and this procedure continues until all the processes
have received the message. The ring-broadcast has a large latency
(𝛼) term, i.e. any broadcast requires 𝑝 − 1 sequential steps to finish,
but it is optimal in terms of bandwidth since any process needs to
receive and sends only one message.

Figure 1: Optimal rank placement for 𝐾 = 4 and𝑄 = 6. This repre-
sent the minimal inter-node communication placement for 24 MPI-

processes on 4 node with 6 MPI-processes per node.

We use the library broadcast for DiagBcast to minimize the
latency since message size here is small and it is on the critical path
of the computation. On the other hand, we optimize the bandwidth
bounded PanelBcast using the ring-based broadcast algorithm.

Besides improving the bandwidth, the ring-broadcast shortens
the critical path of ParallelFw . This is because in the ring based
PanelBcast(𝑘), 𝑃𝑟 (𝑘+1), and 𝑃𝑐 (𝑘+1) receives the panels first,
so they can perform the pipelined update before PanelBcast(𝑘)
is finished. The ring-based PanelBcast introduces asynchrony
between the processes across iterations, since PanelBcast(𝑘+1)
need not wait until the completion of PanelBcast(𝑘) or even
PanelBcast(𝑘−1). In contrast, the Algorithm 4 can overlap at most
two consecutive iterations only.

3.4 Optimal Rank Ordering

3.4.1 Improved models for communication cost. We go back to the
model of communication cost in Eq. (1). This model has two key
limitations when used in practice.

First, the cost of sending a data 𝑡𝑤 depends on how many MPI
processes are spawned in a node. Since all the processes share a sin-
gle network interface (NIC), if multiple MPI processes are spawned,
per process bandwidth will be decreased and 𝑡𝑤 will increase. Sec-
ond, this model does not capture intranode data movement. For
instance, if all processes in a communicator are within a node, then
for a collective operation the effective 𝑡𝑤 will be much smaller com-
pared to the instance where the communicator spawns multiple
nodes.

A more accurate model of communication costs by considering
total data sent outside of NIC. Let assume that we have MPI grid
of dimension 𝑃 = 𝑃𝑟 × 𝑃𝑐 and we have 𝑄 processes per-node draw
from MPI grid in dimension 𝑄𝑟 ×𝑄𝑐 . Typically, while creating MPI
2D grid, every node was assigned with continuous MPI-process
ranks hence the typical configurations are 1 ×𝑄 or 𝑄 × 1.

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

125

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden Piyush Sao et al.

We define the logical node-grid of dimension 𝐾𝑟 × 𝐾𝑐 where
𝐾𝑟 = 𝑃𝑟 /𝑄𝑟 and 𝐾𝑐 = 𝑃𝑐/𝑄𝑐 . Suppose we had one MPI process per
node, so 𝑄𝑟 = 𝑄𝑐 = 1 and 𝑃𝑟 = 𝐾𝑟 and 𝑃𝑐 = 𝐾𝑐 , then we can use
Eq. (1). and obtain the communication cost 𝑇𝑐𝑜𝑚𝑚 (neglecting the
latency term) as

𝑇𝑐𝑜𝑚𝑚 = 𝑡𝑤 (
𝑛2

𝐾𝑟
+ 𝑛

2

𝐾𝑐
).

For any choice of the number of MPI process per node𝑄 = 𝑄𝑟 ×
𝑄𝑐 and for a given𝐾 number of nodes in𝐾𝑟 ×𝐾𝑐 , the above equation
represents the lower bound on the amount of data transferred via
from a node in ParallelFw. Hence for a given MPI process grid
𝑃 = 𝑃𝑟 × 𝑃𝑐 with 𝑄 = 𝑄𝑟 ×𝑄𝑐 MPI processes sharing a node’s NIC,
the lower bound on communication is

𝑇𝑐𝑜𝑚𝑚 = 𝑡𝑤 (
𝑛2𝑄𝑟
𝑃𝑟
+ 𝑛

2𝑄𝑐
𝑃𝑐
) .

where 𝑡𝑤 = Size in byte for unit data/NIC-bandwidth.

3.4.2 Optimal Rank Placement. To minimize the communication
volume per Section 3.4.1, we should have

𝐾𝑟 ≈ 𝐾𝑐 (2)

The latency term only depends on 𝑃𝑟 and 𝑃𝑐 . To minimize the
latency cost we should have

𝑃𝑟 ≈ 𝑃𝑐 . (3)

To satisfy both Eqs. (2) and (3), we should also have 𝑄𝑟 ≈
𝑄𝑐 . We place ranks within a node to achieve optimal 𝑄𝑟 and 𝑄𝑐
as shown in Figure 1. Such a placement can be specified using
MPICH_RANK_ORDER or by using an explicit resource file in the
case of the Summit supercomputer.

4 SINGLE NODE OPTIMIZATION

4.1 Semiring Matrix multiplication on GPU

We implemented semiring matrix multiplication on GPU SrGemm
using Nvidia’s Cutlass template library for constructing efficient
GEMM type of operation on Nvidia GPUs[1]. While Cutlass does
not directly support semi-ring algebra as yet, wemodified it suitably
to do so. Our SrGemm kernel achieves single-precision 6.8TFlop/sec
on Nvidia V100 GPU. The theoretical single-precision peak of V100
is 15.7 TFlop/sec, SrGemm can not use the fused multiply and add
(FMA) units available on V100, hence theoretical peak for SrGemm
is 7.8TFlop/sec. The SrGemm kernel is central to high performance
for Floyd-Warshall, we consider SrGemm as a black-box unit
in this work. We plan to opensource the SrGemm code and pro-
vide a detailed performance analysis of SrGemm beyond min-plus
semiring in the near future.

4.2 DiagUpdate on GPU

The cost of DiagUpdate in the BlockedFw computation is 2𝑛𝑏2𝑡𝑓 ,
which we often ignore as typically 𝑏 ≪ 𝑛. However, at extreme
strong scaling case when 𝑃 = O

(
𝑛2

𝑏2

)
, the cost of DiagUpdate

can not be ignored. To achieve good strong-scaling we must also
perform theDiagUpdate on the GPU. TheDiagUpdate is the semi-
ring equivalent of matrix-inversion. To express DiagUpdate using
SrGemm, we use the following relation for computing transitive

Figure 2: Execution order and pipelines scheme for ooGSrGemm.

Steps of SrGemm, d2hXfer and hostUpdate execute in parallel to

mask the memory transfer cost.

closure which is semi-ring equivalent of Neuman series for matrix
inversion:

DiagUpdate(𝐴) =
dim(𝐴)∑
⊕

𝐴𝑖 . (4)

Note that Eq. (4) can be computed with log2 (dim(𝐴)) matrix-
matrix multiplications. This, however, increases the asymptotic cost
of DiagUpdate to O

(
𝑛𝑏2 log𝑏

)
, in practice it significantly speeds

up DiagUpdate due to relatively higher GPU performance.

4.3 Out-of-GPU semi-ring matrix

multiplication

So far we have assumed that complete local distance matrix fits in
the GPU memory, and many of the optimizations we have used
in Co-ParallelFw require that to work. However, when the local
matrix does not fit in the GPU memory then we can not compute
Apsp. This poses a significant limitation on the size of the prob-
lem that our algorithm can handle. In the section we describe a
memory-efficient flavor of algorithm 3Me-ParallelFw that doesn’t
have such limitation. However, such improvement comes at cost
of increased data transfer between the host and the GPU typically
via NVLink or PCIe. We show that by choosing the parameters
correctly we can significantly reduce this penalty. In the heart of
Me-ParallelFw, lies out-of-GPU semi-ring matrix multiplication
kernel (ooGSrGemm). In this section, we describe the design and
analysis of ooGSrGemm.We focus on OuterUpdate since its the
most computationally demanding substep in ParallelFw .

Consider the semiring matrix multiplication 𝐶 ← 𝐶 ⊕ 𝐴 ⊗ 𝐵
of two panels 𝐴 ∈ R𝑚×𝑘 and 𝐵 ∈ R𝑘×𝑛 which is accumulated on
𝐶 ∈ R𝑚×𝑛 . We are interested in the case where𝑚,𝑛 ≫ 𝑘 and𝑚 ×𝑛
is so large that it does not fit in the GPU memory. The idea of
ooGSrGemm is to divide the SrGemm into smaller chunks of size
𝑚𝑥 × 𝑛𝑥 so it can easily fit in GPU memory.

We assume that 𝐴 and 𝐵 are already in GPU memory. We divide
𝐴 by rows into 𝐴0, 𝐴1 . . . 𝐴𝑚𝑏−1 where𝑚𝑏 = 𝑚/𝑚𝑥 and each 𝐴𝑖
has a dimension 𝑚𝑥 × 𝑘 ; and 𝐵 by columns into 𝐵0, 𝐵1 . . . 𝐵𝑛𝑏−1
where 𝑛𝑏 = 𝑛/𝑛𝑥 and each 𝐵 𝑗 has a dimension 𝑘 × 𝑛𝑥 . Using GPU
buffer 𝑋 of size𝑚𝑥 × 𝑛𝑥 , we perform the following steps:

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

126

Scalable APSP on multi-GPU clusters HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

• SrGemm to compute 𝑋 ← 𝐴𝑖 ⊗ 𝐵 𝑗 ;
• d2hXfer: transfer the compute X from the GPU to host; and
• hostUpdate: 𝐶𝑖 𝑗 ← 𝐶𝑖 𝑗 ⊕ 𝑋 .

Since each of the three steps involves different hardware, we can
potentially overlap the three. We use cudaStream API to do so. In
a single cudaStream all the tasks will be performed sequentially
but cudaStreams are asynchronous to each other. So when one
cudaStream is computing SrGemm, the other stream performs
d2hXfer.

4.4 Hiding GPU to host transfer cost

To use 𝑠 cudaStreams, we initialize 𝑠 buffers 𝑋0, 𝑋1 . . . , 𝑋𝑠−1 each
of size𝑚𝑥 × 𝑛𝑥 . The SrGemm and d2hXfer of any block 𝐶𝑖 𝑗 are
performed in a single stream. The blocks are assigned to streams in
a round-robin fashion.

Any cudaStream 𝑟 computes 𝑋𝑟 ← 𝐴𝑖 × 𝐵 𝑗 and sends it to
the host. The host waits for cudaStream in the order they were
initiated. So when the host receives𝑋𝑟 , it performs the hostUpdate
𝐶𝑖 𝑗 ← 𝐶𝑖 𝑗 ⊕𝑋𝑟 . Now the host initializes SrGemm and d2hXfer for
another block on 𝑟 -th cudaStream, if there are any blocks left to
be updated. The host now waits for the 𝑟+1-th stream to finish the
data transfer.

We can also hide the cost of transferring𝐴 and 𝐵 by pipelining it.
To do so, instead of sending the complete𝐴 and 𝐵 matrices we send
𝐴𝑖 when we are performing update of 𝐶𝑖,0, and send 𝐵 𝑗 when we
are performing update of 𝐶0, 𝑗 . 𝐴𝑖 and 𝐵 𝑗 needs to sent only once,
and we reuse 𝐴𝑖 and 𝐵 𝑗 when performing update on any blocks
𝐶𝑖, 𝑗

4.5 Cost of SrGemm in offload-model

The total number of flops performed in ooGSrGemm is 2𝑚𝑛𝑘 , so
the total cost of SrGemm (𝑡0) is 𝑡0 = 2𝑚𝑛𝑘𝑡𝑓 , where 𝑡𝑓 is time to
perform a floating point operation. The total data sent from host to
device and device to host is (𝑚+𝑛)𝑘 and𝑚𝑛 respectively. So the cost
of the data transfer between host and device (𝑡1) is (𝑚𝑛+𝑛𝑘+𝑚𝑘)𝑡ℎ𝑑 ,
where 𝑡ℎ𝑑 is the cost of sending unit data between host and device.
And finally, the performance of hostUpdate is limited by the CPU-
DRAMmemory bandwidth. Since hostUpdate performs 2𝑚𝑛 reads
(𝐶 and 𝑋) and𝑚𝑛 writes (𝐶) between CPU and DRAM, the cost of
the hostUpdate (𝑡2) is 3𝑚𝑛𝑡𝑚 where 𝑡𝑚 is the cost of unit DRAM
to CPU transfer.

If we use a single cudaStream then we will not be able to
overlap either of the three steps so the cost will be 𝑡0 + 𝑡1 + 𝑡2. With
two streams we can only overlap one substep with another two
so the total cost will be min

{
max𝑖, 𝑗,𝑘

{
𝑡𝑖 , 𝑡 𝑗 + 𝑡𝑘

}}
where 𝑖, 𝑗, 𝑘 ∈

{0, 1, 2}. And with three or more streams, all three substeps can be
overlapped so the cost of ooGSrGemm will be max {𝑡0, 𝑡1, 𝑡2}

To achieve the peak flop-rate we should have cost of either
d2hXfer or hostUpdate be lower than the cost of SrGemm. So

𝑡0 ≥ max {𝑡1, 𝑡2}

In our case,𝑚,𝑛 ≫ 𝑘 so the cost of the data transfer between
host and device can be approximated as 𝑡1 ≈ 𝑚𝑛𝑡ℎ𝑑 . So we can
simplify above equation:

𝑘 ≥ max

{
𝑡ℎ𝑑

2𝑡𝑓
, 3
𝑡𝑚

2𝑡𝑓

}
(5)

5 EXPERIMENTS AND EMPIRICAL RESULTS

We perform experiments to understand the individual impact of
each optimization as well as how they work in cohesion.

5.1 Setup

We describe experimental details such as the testbed, data, met-
rics, and programming environment that we used to explain the
observations. In all cases, we experimentally confirmed that the
output of our revised implementations match outputs (results) of
the sequential Floyd-Warshall baseline.

5.1.1 Testbed. The Summit system consists of 4,608 nodes. Each
node has two 22-core IBM POWER9 processors and six NVIDIA
Volta V100 GPUs, connected by NVLINK-2, which has a peak per-
formance bidirectional bandwidth of 100GB/s. V100 GPU has 5,120
cores operating at 1.53GHz, which translates to theoretical peak of
7.85 TF/s and 15.7 TF/s in single precision with and without FMA
instructions. The peak memory bandwidth of each V100 GPU is
900GB/s. Each node contains 512GB main memory, while each
GPU contains 16GB HBM2 memory. The nodes are connected with
a Mellanox Infiniband fat-tree interconnect which has an effective
bandwidth of 25GB/s per node.

5.1.2 Legends. In this section, we discuss the different legends
Baseline, Pipelined, +Reordering, +Async, and offload that
appear in the plots.
• Baseline: represents the implementation of Algorithm 3.
• Pipelined: Algorithm 4 which overlaps communication with
computation.
• +Reordering: Pipelined with optimal rank reordering dis-
cussed in Section 3.4.
• +Async: +Reordering with the asynchronous ring broadcast
discussed in Section 3.3.
• offload: the memory-efficient flavor of Algorithm 3 outlined
in Section 4.

5.1.3 Metrics. For reporting absolute performance, we use the
normalized metric Flops/sec depending upon the scale of the prob-
lem. In the case of a single GPU, we use 𝐺𝑖𝑔𝑎𝐹𝑙𝑜𝑝𝑠/𝑆𝑒𝑐 and for
multiple GPUs, we always report 𝑃𝑒𝑡𝑎𝐹𝑙𝑜𝑝𝑠/𝑠𝑒𝑐 . We use effective
bandwidth per node in GB/Sec when reporting performance of indi-
vidual communication optimizations. The effective bandwidth per
node is computed as 𝑊𝑚𝑖𝑛

𝑡𝐹𝑊
, here𝑊min is the theoretical minimum

per-node communication volume among all the configurations for
given problem size and the number of nodes, and 𝑡𝐹𝑊 is the total
time spent in ParallelFw.

5.1.4 Test Graphs. The entire experimentation was conducted on
a dense uniform random matrix.

5.1.5 Programming Environment. The software versions used are
GCC 6.4.0, IBM Spectrum MPI 10.2.0.0, and CUDA 10.1.243. Sum-
mit’s jsrun tool is used for application launch. No other proprietary
software was used in the execution.

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

127

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden Piyush Sao et al.

5.2 Impact of Communication Optimizations

5.2.1 Optimal Rank Placement. In this section, we evaluate differ-
ent rank placement schemes discussed in Section 3.4.1. Recall the
𝐾 , 𝑃 and 𝑄 parameters from Section 3.4.1: 𝑃𝑟 , 𝑃𝑐 are the dimen-
sions of MPI grid; 𝑄𝑟 , 𝑄𝑐 are the dimensions node local MPI grid;
and 𝐾𝑟 , 𝐾𝑐 are the dimensions of node grid; and 𝐾𝑟 = 𝑃𝑟 /𝑄𝑟 and
𝐾𝑐 = 𝑃𝑐/𝑄𝑐 . Given a node count, we explore the different combi-
nations of 𝑃𝑟 , 𝑃𝑐 , 𝐾𝑟 , 𝐾𝑐 , 𝑄𝑟 , 𝑄𝑐 and measure the effective per node
bandwidth GB/Sec.

The Figure 3 shows the effect of rank reordering by sweeping
the 𝑃𝑟 , 𝑃𝑐 , 𝐾𝑟 , 𝐾𝑐 on every node count for 𝑛 = 196, 608 vertices. We
observe that for a given number of nodes, the maximum effective
bandwidth is always achieved when 𝐾𝑟 ≈ 𝐾𝑐 . For instance when
node=4, best performance occurs at 𝐾𝑟 = 𝐾𝑐 = 2. Similarly, the
worst performance occurs when 𝐾𝑟 and 𝐾𝑐 are far-off. Note that in
the single-node case, the best effective bandwidth is higher than
the theoretical limit of 25GB/s since all the communications are
within a single node.

202020 222222222222 24242424242424 26262626262621212121 2323232323 25252525252525

Nodes

5

10

15

20

25

30

B
an

dw
id

th
(G

ig
aB

yt
es

/S
ec

)

(2,6,1,1)

(4,3,1,1)

(12,1,1,1)

(4,12,4,1)

(12,4,4,1)

(24,2,4,1)

(4,12,2,2)

(8,6,2,2)

(12,4,2,2)

(2,96,1,16)

(6,32,1,16)

(4,48,2,8)

(8,24,2,8)

(4,48,4,4)

(16,12,4,4)

(24,8,4,4)

(12,64,2,32)

(4,192,4,16)

(12,64,4,16)

(8,96,8,8)

(16,48,8,8)

(24,32,8,8)

(4,6,1,2)

(6,4,2,1)

(8,3,2,1)

(12,2,2,1)

(2,48,1,8)

(3,32,1,8)

(12,8,1,8)

(12,8,2,4)

(16,6,4,2)

(2,192,2,16)

(6,64,2,16)

(8,48,2,16)

(12,32,2,16)

(12,32,4,8)

(16,24,4,8)

(48,8,4,8)

Figure 3: Effect of Rank Reordering. The plot shows ob-

tained bandwidth for different combination of 𝑃𝑟 , 𝑃𝑐 , 𝐾𝑟 , 𝐾𝑐
on every node count for 196,608 vertices.

5.2.2 Evaluation of Different Communication Strategies. We evalu-
ate the impact of different communication optimizations discussed
in Section 3.3 and Section 3.2. The Figure 4 show the effective
bandwidth achieved for Pipelined, +Reordering, +Async and the
Baseline variants. We vary the problem size from 26k to 524k on
64 nodes of Summit. Note that our effective bandwidth calculations
are meaningful when the execution time is dominated by intern-
ode communication time. Hence when the problem size is small,
execution time is dominated by bandwidth cost. Whereas for large
problem size the execution time is dominated by compute time. On
64 nodes, 120k is the theoretical estimate of the smallest problem
size when Floyd-Warshall becomes compute-bound.

When the execution time is dominated by communication time,
we observe that Pipelined achieves better effective bandwidth com-
pared to the Baseline as it hides the cost of computation. Whereas
+Reordering reduce the communication cost in addition to hiding
the computation cost. Furthermore +Async reduce the synchro-
nization cost on top of all former optimizations. In the best case, our

26
00

8

32
76

8

41
28

5

52
01

6

65
53

6

82
57

0

10
40

32

13
10

72

16
51

40

20
80

64

26
21

44

33
02

81

41
61

28

52
42

88

Vertices

0

2

4

6

8

E
ff

ec
ti

ve
B

an
dw

id
th

(G
ig

ab
yt

e/
S

ec
)

Theoretically Compute

Bound

Baseline

Pipelined

+Rank Reordering

+Async

Figure 4: The effect of optimizing communication with

pipelined, asynchronous and rank reordering on Paral-

lelFw for various vertices in 64 nodes

implementation that encompasses all the optimizations is achieves
four times higher effective bandwidth.

5.3 Impact of Single Node Optimizations

5.3.1 Performance of Offload Model SRGEMM on Single GPU. We
built the ooGSrGemm micro benchmark to understand its perfor-
mance on a single GPU. The performance of ooGSrGemm is heavily
dependent on (a) Input size𝑚,𝑛 (b) Block Size 𝑏 and (c) GPU Max
Rows𝑚𝑥 , 𝑛𝑥 . For simplicity, we are assuming𝑚 = 𝑛 and𝑚𝑥 = 𝑛𝑥 .

First, we find the minimum block size for the ooGSrGemm. So
for different𝑚𝑥 ∈ {512, 1𝑘, 2𝑘, 4𝑘}, we vary the block size in Sec-
tion 5.3.1, and observe the performance. We observe that for block
size > 768 ooGSrGemm performs very close to the peak for all
𝑚𝑥 . Per Eq. (5), we estimate minimum block size of 624 assuming
NVlink’s bandwidth= 50GB/s and peak flop rate =7.8TFlops. So our
model’s prediction is very close to the observed block size.

Recall that𝑚𝑥 and 𝑛𝑥 are the dimensions for buffer. We assume
𝑚𝑥 = 𝑛𝑥 and vary𝑚𝑥 and the input size 𝑛 = #vertices block size
𝑏 = 768. From Figure 6, we can observe that, in a single GPU,
the ooGSrGemm performance is close to peak even for buffers of
dimension 2𝑘 × 2𝑘 if 𝑛 is sufficiently large.

We evaluate the performance of the end-to-end ParallelFw
with the different optimizations. All the experiments in Sections 5.4
and 5.5, utilized the entire 6 GPUs in a node and used 2 MPI ranks
per GPU.

5.4 Performance on 64 nodes

We compare all the optimizations to Baseline by varying the input
size from 16e3 to 1.6e6 vertices on 64 nodes shown in Figure 7.
When the vertex size is less than 208k, ParallelFw is network
bandwidth bound so Co-ParallelFw has higher relative perfor-
mance. As the number of vertices increases, ParallelFw becomes
compute-bound so in such cases, we do not see the advantage of

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

128

Scalable APSP on multi-GPU clusters HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

128 256 512 768 1024 2048
Block Size

1000

2000

3000

4000

5000

6000

7000

8000

G
ig

aF
lo

p/
S

ec

Theoretical Peak =7800 GFlop/sec

Peak

Baseline

512

1K

2K

4K

Figure 5: Offload out-of-gpu Srgemm performance with re-

spect to block size

1K 2K 4K 8K
Max(mx, nx)

64
K

32
K

16
K

8K
4K

V
er

ti
ce

s

5.8e+03 6.2e+03 6.2e+03 6.3e+03

5.5e+03 5.9e+03 5.9e+03 5.6e+03

5.2e+03 5.3e+03 5.2e+03 4.4e+03

4.7e+03 4.9e+03 4.1e+03 2.5e+03

3.8e+03 3.6e+03 2.2e+03 2.2e+03
2500

3000

3500

4000

4500

5000

5500

6000

Figure 6: out-of-gpu Srgemm performance in Gigaflops/sec for dif-

ferent𝑚 (the operand size) and𝑚𝑥 GPU buffer’s dimension.

communication optimizations. Also note that all other implemen-
tations except offload can run only up to 524k vertices whereas,
with Me-ParallelFw, we can push it to 1.6 Million vertices while
achieving 50% of peak theoretical throughput.

5.5 Strong and Weak Scaling

5.5.1 Strong Scaling. We evaluated performance on 16 to 256 nodes
for 𝑛 = 300, 000 vertices and present the performance in Figure 8.
The Co-ParallelFw implementation achieves 45% of parallel effi-
ciency. Note that, in 16 nodes Co-ParallelFw is 1.6x faster over the
baseline and it is 4.6x faster on 256 nodes. This is expected since at

16
38

4

20
64

3

26
00

8

32
76

8

41
28

5

52
01

6

65
53

6

82
57

0

10
40

32

13
10

72

16
51

40

20
80

64

26
21

44

33
02

81

41
61

28

52
42

88

66
05

62

83
22

55

10
48

57
6

13
21

12
4

16
64

51
1

Vertices

2−6

2−5

2−4

2−3

2−2

2−1

20

21

P
er

fo
rm

an
ce

(P
et

aF
lo

ps
/S

ec
)

Theoretical Peak =3 PF/sec
B

eyond
G

P
U

M
em

ory

Peak

Baseline

Pipelined

Async

Offload

Figure 7: ParallelFw Performance with different optimization

on 64 nodes. The performance was measured by sweeping the num-

ber of vertices.

Node

P
er

fo
rm

an
ce

 (P
et

aF
lo

p/
S

ec
s)

0

2

4

6

8

10

16 32 64 128 256

Offload

Baseline

Pipelined

+reordering

+Async

Perfect Scaling

Figure 8: Strong Scaling of ParallelFw on 300,000 vertices.

the higher node count effect of communication cost is pronounced,
that Co-ParallelFw handles gracefully.

5.5.2 Weak Scaling. For weak scaling experiment, we keep the
workload 𝑂 (𝑛3𝑝) constant. The experiments was conducted with
300,000 vertices on 16 nodes and scale accordingly to 256 nodes.
From the Figure 9, Co-ParallelFw shows perfect weak scaling,
whereas for offload and baseline do not scale well. This is attributed
to fact that baselines and offload do not actively hide the communi-
cation.

6 RELATEDWORK

Besides Floyd-Warshall, Johnson’s algorithm[21] which com-
putes single-source shortest path (Sssp) from all the vertices is
another popular method used in HPC. It can achieve the lowest as-
ymptotic complexity ofO

(
𝑚𝑛 + 𝑛2 log𝑛

)
if Dijkstra’s algorithm[11]

with the Fibonacci heap[16] is used for Sssp. When the input graph

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

129

HPDC ’21, June 21–25, 2021, Virtual Event, Sweden Piyush Sao et al.

Node

R
un

tim
e

(S
ec

s)

0

100

200

300

16 32 64 128 256

Offload Baseline Pipelined +reordering +Async

Figure 9:Weak Scaling of ParallelFw begin with 300,000 vertices

on 16 nodes. The workload𝑂 (𝑛3
𝑝
) per node is kept constant

is sparse i.e. 𝑚 = O(𝑛), it becomes an attractive alternative to
Floyd-Warshall. Dijkstra’s algorithm for Sssp uses a priority
queue data structure which is difficult to parallelize for massively
threaded architecture. Another choice for Sssp inside Johnson’s
algorithm is Bellmen-Ford[5, 15], which is an embarrassingly paral-
lel computation but may not be work optimal. The Delta-stepping
algorithm [28] of Scott and Meyers is a hybrid of Dijkstra and
Bellmen-Ford that provides more parallelism than Dijkstra’s algo-
rithm and performs fewer operations than Bellman-Ford. For undi-
rected graphs with positive integer weights, Thorup algorithm[41]
is a theoretically optimal algorithm. On graphs with multiple com-
ponents one may use graph connected-components algorithm[30],
and perform Apsp on each connected component of the graph.
Out-of-memory GPU computation of these graph kernels has been
explored by Gera et al. [17]. Optimized implementations of these
Sssp routines available in many popular graph packages such as
Boost Graph Library (BGL) [36], Galois [29], and Graphmat [39] for
CPUs, and cuGraph [2] and Gunrock [44] for GPUs. Single-node per-
formance comparison of these approaches with Floyd-Warshall
may be found elsewhere [10, 22, 31].

Based on the original Floyd-Warshall, the first 2D distributed-
memory algorithm for the APSP without blocking using 𝑛 global
synchronization is attributed to Jenq and Sahni [20]. Kumar &
Singh [25] analyzed the scalability of different Apsp algorithms and
showed overlapping communication with computation in the non-
blocked case. Solomonik et al. proposed a communication avoiding
parallel Apsp which uses the divide and conquer approach on 2.5D
process grid [37]. But in absolute performance, it achieved only
about 10 to 25% of peak, with maximum tested problem sizes of n
= 65,536. A distributed GPU Apsp showed good performance for
smaller clusters [12]. Also, their centralized communication scheme
limits their scalability beyond 64GPUs.

The Floyd-Warshall based Apsp shares structural similarity
withHigh Performance Linpack (HPL) and therefore ismore amenable
to some of the parallelization techniques such as look ahead and cus-
tomized broadcast explored in HPL library [3, 7, 13, 19, 38, 43]. It’s
no surprise that ourApsp implementationCo-ParallelFw achieves
similar efficiency as HPL benchmark on Summit. For sparse ma-
trices, similar optimizations have been explored in [32–34]. Such

optimizations can be combined with sparse Floyd-Warshall ap-
proaches as [31].

The GraphBLAS Forum [23] is an open effort to define stan-
dard building blocks for graph algorithms in the language of linear
algebra. This decouples the realization of graph algorithms inde-
pendent of the distributed performance and scalability. The first
distributed realization of GraphBLAS on MPI runtime using C++
was CombBLAS [6]. Recently, LAGraph [27], provided a distributed
Scala API on Spark runtime based on GraphBLAS. However, the
APSP algorithm implemented in LAGraph [27] and uses an outer
product formulation equivalent to SGER of level-II BLAS, which
will not be as efficient as BlockedFw on GPUs.

Apsp is theoretically an important problem as a number of other
problems are equivalent toApsp e.g. metricity, minimum-weight tri-
angle, second shortest path etc.[45, 46]. While Apsp is the semiring-
equivalent of matrix inversion, no truly sub-cubic (Strassen-like)
algorithm for Apsp is known. Seidel[35] showed a way to use fast
matrix multiplication algorithms, such as Strassen’s algorithm, for
the solution of the APSP problem by embedding the semiring into
a ring. The best known complexity of Apsp for the dense case is
O
(
𝑛3−𝑜 (1)

)
[45] and O

(
𝑚𝑛
log𝑛

)
for sparse graphs [9]. For the parallel

case, the complexity is O(log𝑛) due to Tishkin [42]. The seminal
work of Carre and others establishes the equivalence between find-
ing shortest paths and solving a system of linear equations [4, 8].
There are several modern treatments of this subject as well [18, 26].

7 CONCLUSIONS AND FUTUREWORK

The performance-improvement methods we explored are inspired
by techniques from parallel dense linear algebra. Their applica-
tion to dense Floyd-Warshall significantly improves its inherent
strong and weak scalability and, critically, overcomes the memory
capacity limits imposed by existing GPU designs, which appor-
tion relatively low per-device memory capacities compared to their
host nodes. Furthermore, our scaling results on Summit should ex-
tend to other systems, and the performance models we derived can
guide their tuning when porting ParallelFw to any accelerated
architecture.

For extremely large and sparse graphs, alternatives such as John-
son’s algorithm will be competitive to Floyd-Warshall but cannot
exploit GPUs. Hence, even for sparser graphs, we expect the perfor-
mance gap between Johnson’s and Floyd-Warshall will continue
to shrink [31]. Our optimizations for ParallelFw are also applica-
ble to other Floyd-Warshall-based approaches that exploit the
structure and sparsity of the graph [12, 31].

Currently, we plan to extend this work to support distributed
shortest path generation and incremental Floyd-Warshall, which
are critical in applications, and add support of structured sparse
graphs, where exploiting sparsity becomes paramount [31].

8 ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Robinson Pino, program manager, under contract
number DE-AC05-00OR22725, as well as by the National Science
Foundation under Grant Nos. 1533768 and 1710371. This research
used resources of the Oak Ridge Leadership Computing Facility,

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

130

Scalable APSP on multi-GPU clusters HPDC ’21, June 21–25, 2021, Virtual Event, Sweden

which is a DOE Office of Science User Facility supported under
Contract DE-AC05-00OR22725.

REFERENCES

[1] Nvidia/cutlass: Cuda templates for linear algebra subroutines. https://github.
com/NVIDIA/cutlass. (Accessed on 01/24/2021).

[2] rapidsai/cugraph: cugraph - rapids graph analytics library. https://github.com/
rapidsai/cugraph. (Accessed on 01/24/2021).

[3] Matthias Bach, Matthias Kretz, Volker Lindenstruth, and David Rohr. Optimized
HPL for AMD GPU and multi-core CPU usage. Computer Science-R&D, 26(3-
4):153–164, 2011.

[4] Roland C Backhouse and Bernard A Carré. Regular algebra applied to path-
finding problems. IMA Journal of Applied Mathematics, 15(2):161–186, 1975.

[5] Richard Bellman. On a routing problem. Quarterly of applied mathematics,
16(1):87–90, 1958.

[6] Aydın Buluç and John R Gilbert. The combinatorial blas: Design, implementation,
and applications. The International Journal of High Performance Computing

Applications, 25(4):496–509, 2011.
[7] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek, and

Stanimire Tomov. The impact of multicore on math software. In International

Workshop on Applied Parallel Computing, pages 1–10. Springer, 2006.
[8] Bernard A Carré. An algebra for network routing problems. IMA Journal of

Applied Mathematics, 7(3):273–294, 1971.
[9] Timothy M Chan. All-pairs shortest paths for unweighted undirected graphs in

𝑜 (𝑚𝑛) time. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 514–523. Society for Industrial and Applied Mathematics, 2006.
[10] Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Renato F Wer-

neck. Phast: Hardware-accelerated shortest path trees. Journal of Parallel and
Distributed Computing, 73(7):940–952, 2013.

[11] Edsger W Dijkstra et al. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[12] Hristo Djidjev, Guillaume Chapuis, Rumen Andonov, Sunil Thulasidasan, and
Dominique Lavenier. All-pairs shortest path algorithms for planar graph for gpu-
accelerated clusters. Journal of Parallel and Distributed Computing, 85:91–103,
2015.

[13] Massimiliano Fatica. Accelerating Linpack with CUDA on heterogenous clus-
ters. In Proceedings of 2nd Workshop on General Purpose Processing on Graphics

Processing Units, pages 46–51. ACM, 2009.
[14] Jeremy T. Fineman and Eric Robinson. Fundamental graph algorithms. In Jeremy

Kepner and John Gilbert, editors, Graph Algorithms in the Language of Linear

Algebra, chapter 5, pages 45–58. Society of Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2011.

[15] Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica
Ca, 1956.

[16] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM (JACM),
34(3):596–615, 1987.

[17] Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David Bader. Travers-
ing large graphs on gpus with unified memory. Proceedings of the VLDB Endow-

ment, 13(7):1119–1133, 2020.
[18] Michel Gondran and Michel Minoux. Graphs, dioids and semirings: new models

and algorithms, volume 41. Springer Science & Business Media, 2008.
[19] AlexanderHeinecke, KarthikeyanVaidyanathan,Mikhail Smelyanskiy, Alexander

Kobotov, Roman Dubtsov, Greg Henry, Aniruddha G Shet, George Chrysos, and
Pradeep Dubey. Design and implementation of the Linpack benchmark for single
and multi-node systems based on Intel® Xeon Phi coprocessor. In Parallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages
126–137. IEEE, 2013.

[20] Jing Fu Jenq and Sartaj Sahni. All pairs shortest paths on a hypercube multipro-
cessor. In Proc Int Conf Parallel Process 1987, pages 713–716. Pennsylvania State
Univ Press, 1987.

[21] Donald B Johnson. Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM (JACM), 24(1):1–13, 1977.

[22] R. Kannan, P. Sao, H. Lu, D. Herrmannova, V. Thakkar, R. Patton, R. Vuduc, and
T. Potok. Scalable knowledge graph analytics at 136 petaflop/s. In 2020 SC20:

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC), pages 1–13, Los Alamitos, CA, USA, nov 2020. IEEE Computer
Society.

[23] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti,
John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, et al. Mathematical foundations of the GraphBLAS. In 2016 IEEE

High Performance Extreme Computing Conference (HPEC), pages 1–9. IEEE, 2016.
[24] Andrew Kerr. Cutlass: Cuda templates for linear algebra subroutines, November

2019.

[25] Vipin Kumar and Vineet Singh. Scalability of parallel algorithms for the all-pairs
shortest-path problem. Journal of Parallel and Distributed Computing, 13(2):124–
138, 1991.

[26] Grigory L Litvinov. Idempotent/tropical analysis, the hamilton–jacobi and bell-
man equations. In Hamilton-Jacobi equations: approximations, numerical analysis

and applications, pages 251–301. Springer, 2013.
[27] Tim Mattson, Timothy A Davis, Manoj Kumar, Aydin Buluc, Scott McMillan, José

Moreira, and Carl Yang. Lagraph: A community effort to collect graph algorithms
built on top of the graphblas. In 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pages 276–284. IEEE, 2019.
[28] Ulrich Meyer and Peter Sanders. 𝛿-stepping: a parallelizable shortest path algo-

rithm. Journal of Algorithms, 49(1):114–152, 2003.
[29] Keshav Pingali. High-speed graph analytics with the galois system. In Proceedings

of the first workshop on Parallel programming for analytics applications, pages
41–42. ACM, 2014.

[30] Piyush Sao, Oded Green, Chirag Jain, and Richard Vuduc. A self-correcting
connected components algorithm. In Proceedings of the ACM Workshop on Fault-

Tolerance for HPC at Extreme Scale, pages 9–16. ACM, 2016.
[31] Piyush Sao, Ramakrishnan Kannan, Prasun Gera, and Richard Vuduc. A supern-

odal all-pairs shortest path algorithm. In Proceedings of the 25th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 250–261,
2020.

[32] Piyush Sao, Xiaoye S Li, and Richard Vuduc. A communication-avoiding 3d
algorithm for sparse lu factorization on heterogeneous systems. Journal of

Parallel and Distributed Computing, 131:218–234, 2019.
[33] Piyush Sao, Xing Liu, Richard Vuduc, and Xiaoye Li. A sparse direct solver for

distributed memory Xeon Phi-accelerated systems. In Parallel and Distributed

Processing Symposium (IPDPS), 2015 IEEE International, pages 71–81. IEEE, 2015.
[34] Piyush Sao, Richard Vuduc, and Xiaoye Sherry Li. A distributed CPU-GPU

sparse direct solver. In European Conference on Parallel Processing, pages 487–498.
Springer, 2014.

[35] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected
graphs. Journal of computer and system sciences, 51(3):400–403, 1995.

[36] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. The boost graph library: user

guide and reference manual. Addison-Wesley, 2002.
[37] Edgar Solomonik, Aydın Buluç, and James Demmel. Minimizing communication

in all-pairs shortest paths. In Proceedings of the 27th IEEE International Parallel

and Distributed Processing Symposium (IPDPS), Boston, MA, USA, 5 2013.
[38] Peter Strazdins et al. A comparison of lookahead and algorithmic blocking

techniques for parallel matrix factorization. 1998.
[39] Narayanan Sundaram, Nadathur Rajagopalan Satish, Md Mostofa Ali Patwary,

Subramanya R Dulloor, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep
Dubey. Graphmat: High performance graph analytics made productive. arXiv
preprint arXiv:1503.07241, 2015.

[40] V. Thakkar, R. Kannan, P. Sao, H. Lu, D. Herrmannova, , R. Patton, R. Vuduc, and
T. Potok. Dense semiring linear algebra on modern cuda hardware. In SIAM

Computational Sciences and Engineering. SIAM, 2021.
[41] Mikkel Thorup. Undirected single-source shortest paths with positive integer

weights in linear time. Journal of the ACM (JACM), 46(3):362–394, 1999.
[42] Alexandre Tiskin. All-pairs shortest paths computation in the bsp model. In

International Colloquium on Automata, Languages, and Programming, pages 178–
189. Springer, 2001.

[43] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear
algebra for hybrid GPU accelerated manycore systems. Parallel Computing,
36(5):232–240, 2010.

[44] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T Riffel, et al.
Gunrock: Gpu graph analytics. ACM Transactions on Parallel Computing (TOPC),
4(1):1–49, 2017.

[45] R Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM
Journal on Computing, 47(5):1965–1985, 2018.

[46] Virginia VassilevskaWilliams and RyanWilliams. Subcubic equivalences between
path, matrix and triangle problems. In 2010 IEEE 51st Annual Symposium on

Foundations of Computer Science, pages 645–654. IEEE, 2010.

Session: Programming for Distributed and Accelerated Systems HPDC ’21, June 22–25, 2021, Virtual Event, Sweden.

131

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://github.com/rapidsai/cugraph
https://github.com/rapidsai/cugraph

	Abstract
	1 Introduction
	2 Background
	2.1 Graph All Pair Shortest Path (Apsp) Problem
	2.2 Sequential Floyd-Warshall algorithm
	2.3 Min-Plus Matrix Multiplication
	2.4 Blocked Floyd-Warshall algorithm
	2.5 Parallel Floyd-Warshall algorithm on 2D process grid
	2.6 GPU Parallelization
	2.7 The cost of ParallelFw

	3 Optimizing Communication in Parallel Floyd-Warshall
	3.1 Data dependencies in ParallelFw :
	3.2 Pipelined Scheduling
	3.3 Asynchronous execution using ring broadcast
	3.4 Optimal Rank Ordering

	4 Single Node Optimization
	4.1 Semiring Matrix multiplication on GPU
	4.2 DiagUpdate on GPU
	4.3 Out-of-GPU semi-ring matrix multiplication
	4.4 Hiding GPU to host transfer cost
	4.5 Cost of SrGemm in offload-model

	5 Experiments and Empirical Results
	5.1 Setup
	5.2 Impact of Communication Optimizations
	5.3 Impact of Single Node Optimizations
	5.4 Performance on 64 nodes
	5.5 Strong and Weak Scaling

	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgements
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 43.78, 718.74 Width 526.23 Height 14.29 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 43.7782 718.7385 526.2321 14.2949

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 10
 11
 10
 11

 1

 HistoryList_V1
 qi2base

